Synthesis of Porous Basic Magnesium Carbonate Crystallographic Materials with Flower-Like Structure

Article Preview

Abstract:

The porous basic magnesium carbonate (Mg5(CO3)4(OH)2.4H2O) crystal crystallographic materials with flower-like structure were prepared successfully by homogeneous precipitation method. Magnesium chloride hexahydrate (MgCl2.6H2O) and urea (CO(NH2)2) were used as reaction materials. The experimental equipment was held at 100°C for 8 h. Phase and morphology of the product were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The formation mechanism of the product was investigated. It was found that the CO2 bubbles acted as porous templates. The growth and gathering of the CO2 bubbles induced the growth of the MgCO3.3H2O columnar crystals. Then the dissolution of the MgCO3.3H2O and the deposition of Mg5(CO3)4(OH)2.4H2O happened simultaneously. Finally the disappearance of MgCO3.3H2O brought about the formation of the porous structure.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

444-449

Citation:

Online since:

December 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Z. P. Zhang, Y. J. Zheng, J. X. Zhang, Q. Zhang, Synthesis and shape evolution of monodisperse basic magnesium carbonate microspheres, Cryst. Growth Des. 7(2) (2006) 337-342.

DOI: 10.1021/cg060544y

Google Scholar

[2] A. Botha, C. A. Strydom, Preparation of a magnesium hydroxy carbonate from magnesium hydroxide, Hydrometallurgy, 62(3) (2001) 175–183.

DOI: 10.1016/s0304-386x(01)00197-9

Google Scholar

[3] X. W. Liu, Y. L. Feng, H. R. Li, Preparation of basic magnesium carbonate and its thermal decomposition kinetics in air, J. Cent. South Univ. 18(6) (2011) 1865-1870.

DOI: 10.1007/s11771-011-0915-z

Google Scholar

[4] X. L. Chen, J. Yu, S. Y. Guo, S. J. Lu, Z. Luo, M. He, Surface modification of magnesium hydroxide and its application in flame retardant polypropylene composites, J. Mater. Sci. 44(5) (2009) 1324-1332.

DOI: 10.1007/s10853-009-3273-6

Google Scholar

[5] Q. Li, Y. Ding, G. H. Yu, C. Li, F. Q. Li, Y. T. Qian, Fabrication of light-emitting porous hydromagnesite with rosette-like architecture, Solid State Commun. 125(2) (2003) 117-120.

DOI: 10.1016/s0038-1098(02)00710-x

Google Scholar

[6] H. Q. Cao, H. Zheng, J. F. Yin, Y. X. Lu, S. S. Wu, X. M. Wu, B. J. Li, Mg(OH)2 complex nanostructures with superhydrophobicity and flame retardant effects, J. Phys. Chem. C 114(41) (2010) 17362-17368.

DOI: 10.1021/jp107216z

Google Scholar

[7] D. B. Wang, C. X. Song, Z. S. Hu, Synthesis of mono-dispersed Mg(OH)2 nanoflakelets, J. Disper. Sci. Technol. 29(7) (2008) 1010-1012.

DOI: 10.1080/01932690701810011

Google Scholar

[8] Z. H. Hao, J. Pan, F. L. Du, Synthesis of basic magnesium carbonate microrods with a surface of house of cards, structure, Mater. Lett. 63(12) (2009) 985-988.

DOI: 10.1016/j.matlet.2009.01.029

Google Scholar

[9] K. Mitsuhashi, N. Tagami, K. Tanabe, T. Ohkubo, H. Sakai, M. Koishi, M. Abe, Synthesis of microtubes with a surface of house of cards, structure via needlelike particles and control of their pore size, Langmuir, 21(8) (2005) 3659-3663.

DOI: 10.1021/la047580o

Google Scholar

[10] C. L. Yan, D. F. Xue, Novel self-assembled MgO nanosheet and its precursors, J. Phys. Chem. B, 109(25) (2005) 12358-12361.

DOI: 10.1021/jp050644z

Google Scholar

[11] W. Cheng, Z. Li, Precipitation of nesquehonite from homogeneous supersaturated solutions, Cryst. Res. Technol. 44(9) (2009) 937-947.

DOI: 10.1002/crat.200900286

Google Scholar

[12] M. Okazaki, T. Funazukuri, Decomposition of urea in sub- and supercritical water with/without additives, J. Mater. Sci. 43(7) (2007) 2316-2322.

DOI: 10.1007/s10853-007-2027-6

Google Scholar

[13] Y. C. Yang, H. H. Yu, X. Y. Wang, Facile synthesis of basic magnesium carbonate with different morphology, Adv. Mater. Res. 554-556 (2012) 575-579.

DOI: 10.4028/www.scientific.net/amr.554-556.575

Google Scholar

[14] Y. P. Jiang, T. J. Peng, H. J. Sun, Preparation of acicular basic magnesium carbonate by the activation product of chrysotile asbestos tailing, Adv. Mater. Res. 178 (2010) 230-235.

DOI: 10.4028/www.scientific.net/amr.178.230

Google Scholar

[15] Y. Wang, Z. B. Li, G. P. Demopoulos, Controlled precipitation of nesquehonite (MgCO3·3H2O) by the reaction of MgCl2 with (NH4)2CO3, J. Cryst. Growth, 310(6) (2008) 1220-1227.

DOI: 10.1016/j.jcrysgro.2008.01.002

Google Scholar

[16] X. K. Cheng, Q. J. He, J. Q. Li, Z. L. Huang, R. A. Chi, Control of pore size of the bubble-template porous carbonated hydroxyapatite microsphere by adjustable pressure, Cryst. Growth Des. 9(6) (2009) 2770-2775.

DOI: 10.1021/cg801421a

Google Scholar

[17] T. Ohkubo, S. Suzuki, K. Mitsuhashi, Preparation of petaloid microspheres of basic magnesium carbonate, Langmuir 23(11) (2007) 5872-5874.

DOI: 10.1021/la7002782

Google Scholar

[18] Y. C. Yang, H. H. Yu, X. Y. Wang, Facile synthesis of basic magnesium carbonate with different morphology, Adv. Mater. Res. 554-556 (2012) 575-579.

DOI: 10.4028/www.scientific.net/amr.554-556.575

Google Scholar

[19] Y. P. Jiang, T. J. Peng, H. J. Sun, Preparation of acicular basic magnesium carbonate by the activation product of chrysotile asbestos tailing, Adv. Mater. Res. 178 (2010) 230-235.

DOI: 10.4028/www.scientific.net/amr.178.230

Google Scholar

[20] Y. Wang, Z. B. Li, G. P. Demopoulos, Controlled precipitation of nesquehonite (MgCO3·3H2O) by the reaction of MgCl2 with (NH4)2CO3, J Cryst. Growth 310 (2008) 1220-1227.

DOI: 10.1016/j.jcrysgro.2008.01.002

Google Scholar