[1]
K. Mamta, G. Santanu, Designing variable height carbon nanotube bundle for enhanced electron field emission, J. Phys. E. 69 (2015) 171–176.
Google Scholar
[2]
D. Ghosh, P. Ghosh, Transparent and flexible field emission display device based on single-walled carbon nanotubes, J. Rap. Res. Lett. 7 (2012) 303–305.
DOI: 10.1002/pssr.201206251
Google Scholar
[3]
H. Sugie, M. Tanemura, Carbon nanotubes as electron source in an x-ray tube, J. Appl. Phys. Lett. 78 (2001) 2578-2580.
DOI: 10.1063/1.1367278
Google Scholar
[4]
Y. T. Jang, C. H. Choi, B. K. Ju, Gated field emitter using carbon nanotubes for vacuum microelectronic devices. 16th IEEE Annual International Conference on Micro Electro Mechanical Systems, KYOTO JAPAN (2003).
DOI: 10.1109/memsys.2003.1189681
Google Scholar
[5]
C. K. Liu, C. T. Hu. Synthesis, Characterization and field emission of single wall carbon nanotubes, J. Diamond & Related Mater. 18 (2009) 345–350.
DOI: 10.1016/j.diamond.2008.10.001
Google Scholar
[6]
M. O. S. Dantas, G. Elisabete, H. E. M. Peres, Field Emission Enhancement Achieved by SelectiveMulti -Walled Carbon Nanotubes Deposition over Silicon Microstructures. 29th Symposium on Microelectronics Technology and Devices (SBMicro), Aracaju, BRAZIL (2014).
DOI: 10.1109/sbmicro.2014.6940094
Google Scholar
[7]
D. W. Kang, J. S. Suh, Fabrication temperature effect of the field emission from closed and open tip carbon nanotube arrays fabricated on anodic aluminum oxide films, J. Appl. Phys. 96 (2004) 5234-5238.
DOI: 10.1063/1.1804622
Google Scholar
[8]
S. M. Yoon, J. S. Chae, Comparison of the field emissions between highly ordered carbon nanotubes with closed and open tips, J. Appl. Phys. Lett. 84 (2004) 825-827.
DOI: 10.1063/1.1645657
Google Scholar
[9]
P. A. Zestanakis, J. P. Xanthakis, Field emission from open multiwall carbon nanotubes: A case of non-Fowler–Nordheim behavior, J. Appl. Phys. 104 (2008) 1-4.
DOI: 10.1063/1.3008040
Google Scholar
[10]
S. H. Jo, Y. Tu, Z. P. Huang, Correlation of field emission and surface microstructure of vertically aligned carbon Nanotubes, J. Appl. Phys. Lett. 84 (2004) 413-415.
DOI: 10.1063/1.1642272
Google Scholar
[11]
W. Zeng, G. J. Fang, Numerical calculations of field enhancement and field amplification factors for avertical carbon nanotube in parallel-plate geometry, J. Diamond & Related Mater. 18 (2009) 1381–1386.
DOI: 10.1016/j.diamond.2009.08.008
Google Scholar
[12]
X. Q. Wang, M. Wang, Modeling and simulation for the field emission of carbon nanotubes array, J. Phys. E. 30 (2005) 101–106.
Google Scholar
[13]
L. C. Benjamin, K. Mauricio, Optimization of Carbon Nanotube Field Emission Arrays J. 2009 COMSOL Conference, Boston America, (2009).
Google Scholar
[14]
C. Prommesberger, F. Dams, Simulation of Electron Trajectories of a Field Emission Electron Source in Triode Configuration by using Finite Element Methods, 24th International Vacuum Nanoelectronics Conference (IVNC), Wuppertal, GERMANY (2011).
Google Scholar
[15]
N. de Jongea, N. J. van Druten, Field emission from individual multiwalled carbon nanotubes prepared in an electron microscope, J. Ultramicroscopy. 95 (2003) 85–91.
DOI: 10.1016/s0304-3991(02)00301-7
Google Scholar
[16]
E. Agnol, Field Emission Simulations of Carbon Nanotubes and Graphene with an Atomic Model, J. Nanomater. Mol. Nano. Technol. 3 (2014) 4.
Google Scholar
[17]
F. F. Dall'Agnol, D. den Engelsen, Field emission from non-uniform carbon nanotube arrays, J. Nanoscale Research Letters. 8 (2013) 319.
DOI: 10.1186/1556-276x-8-319
Google Scholar