[1]
S. Iijima, Helical microtubules of graphitic carbon, nature, 354(7) (1991) 56-58.
DOI: 10.1038/354056a0
Google Scholar
[2]
L. Schadler, S. Giannaris, P. Ajayan, Load transfer in carbon nanotube epoxy composites, Appl. Phys. Lett. 73(26) (1998) 3842-3844.
DOI: 10.1063/1.122911
Google Scholar
[3]
X. Xu, M. M. Thwe, C. Shearwood, K. Liao, Mechanical properties and interfacial characteristics of carbon-nanotube-reinforced epoxy thin films, Appl. Phys. Lett. 81(15) (2002) 2833-2835.
DOI: 10.1063/1.1511532
Google Scholar
[4]
A. Allaoui, S. Bai, H. -M. Cheng, J. Bai, Mechanical and electrical properties of a MWNT/epoxy composite, Compos. Sci. Tech. 62(15) (2002) 1993-(1998).
DOI: 10.1016/s0266-3538(02)00129-x
Google Scholar
[5]
X. Sheng, B. Wouters, T. Breugelmans, A. Hubin, I. F. Vankelecom, P. P. Pescarmona, Cu/Cu x O and Pt nanoparticles supported on multi-walled carbon nanotubes as electrocatalysts for the reduction of nitrobenzene, Appl. Catalysis B-Environm. 147 (2014).
DOI: 10.1016/j.apcatb.2013.09.006
Google Scholar
[6]
D. S. Su, R. Schlögl, Nanostructured carbon and carbon nanocomposites for electrochemical energy storage applications, Chem. Sus. Chem. 3(2) (2010) 136-168.
DOI: 10.1002/cssc.200900182
Google Scholar
[7]
W. H. Tan, S. L. Lee, J. -H. Ng, W. W. F. Chong, C. T. Chong, Characterization of carbon nanotubes synthesized from hydrocarbon-rich flame, I. J. Tech. 7(2) (2016) 343-351.
DOI: 10.14716/ijtech.v7i2.3284
Google Scholar
[8]
J. M. Singer, J. Grumer, Carbon formation in very rich hydrocarbon-air flames—I. Studies of chemical content, temperature, ionization and particulate matter, Symp. Int. Combust. Proc. 7(1) (1958) 559-569.
DOI: 10.1016/s0082-0784(58)80092-2
Google Scholar
[9]
Y. Y. Li, C. C. Hsieh, Synthesis of carbon nanotubes by combustion of a paraffin wax candle, Micro. Nano. Lett. 2(3) (2007) 63-66.
DOI: 10.1049/mnl:20070035
Google Scholar
[10]
W. C. Hu, T. H. Lin, Ethanol flame synthesis of carbon nanotubes in deficient oxygen environments, Nanotech. 27(16) (2016) 165602.
DOI: 10.1088/0957-4484/27/16/165602
Google Scholar
[11]
C. Zhuo, B. Hall, H. Richter, Y. Levendis, Synthesis of carbon nanotubes by sequential pyrolysis and combustion of polyethylene, Carbon. 48(14) (2010) 4024-4034.
DOI: 10.1016/j.carbon.2010.07.007
Google Scholar
[12]
F. Xu, X. Liu, D. T. Stephen, Synthesis of carbon nanotubes on metal alloy substrates with voltage bias in methane inverse diffusion flames, Carbon. 44(3) (2006) 570-577.
DOI: 10.1016/j.carbon.2005.07.043
Google Scholar
[13]
J. Camacho, A. R. Choudhuri, Effects of fuel compositions on the structure and yield of flame synthesized carbon nanotubes, Fullerene, Nanotubes Carbon Nanostr. 15(2) (2007) 99-111.
DOI: 10.1080/15363830601177826
Google Scholar
[14]
B. Demczyk, Y. Wang, J. Cumings, M. Hetman, W. Han, A. Zettl, R. Ritchie, Direct mechanical measurement of the tensile strength and elastic modulus of multiwalled carbon nanotubes, Mater. Sci. Eng. 334(1-2) (2002) 173-178.
DOI: 10.1016/s0921-5093(01)01807-x
Google Scholar
[15]
W. Zhu, D. Miser, W. Chan, M. Hajaligol, Characterization of multiwalled carbon nanotubes prepared by carbon arc cathode deposit, Mater. Chem. Phys. 82(3) (2003) 638-647.
DOI: 10.1016/s0254-0584(03)00341-9
Google Scholar
[16]
A. Cao, C. Xu, J. Liang, D. Wu, B. Wei, X-ray diffraction characterization on the alignment degree of carbon nanotubes, Chem. Phys. Lett. 344 (1-2) (2001) 13-17.
DOI: 10.1016/s0009-2614(01)00671-6
Google Scholar
[17]
S. Rols, R. Almairac, L. Henrard, E. Anglaret, J. -L. Sauvajol, Diffraction by finite-size crystalline bundles of single wall nanotubes, Eur. Phys. J. - B 10(2) (1999) 263-270.
DOI: 10.1007/s100510050854
Google Scholar
[18]
H. Kuzmany, W. Plank, M. Hulman, C. Kramberger, A. Grüneis, T. Pichler, H. Peterlik, H. Kataura, Y. Achiba, Determination of SWCNT diameters from the Raman response of the radial breathing mode, Eur. Phys. J. - B 22(3) (2001) 307-320.
DOI: 10.1007/s100510170108
Google Scholar
[19]
A. Charlier, E. McRae, R. Heyd, M. Charlier, D. Moretti, Classification for double-walled carbon nanotubes, Carbon. 37(11) (1999) 1779-1783.
DOI: 10.1016/s0008-6223(99)00046-9
Google Scholar
[20]
C. M. Chen, Y. M. Dai, J. G. Huang, J. -M. Jehng, Intermetallic catalyst for carbon nanotubes (CNTs) growth by thermal chemical vapor deposition method, Carbon. 44(9)0 (2006) 1808-1820.
DOI: 10.1016/j.carbon.2005.12.043
Google Scholar
[21]
L. Ci, B. Wei, C. Xu, J. Liang, D. Wu, S. Xie, W. Zhou, Y. Li, Z. Liu, D. Tang, Crystallization behavior of the amorphous carbon nanotubes prepared by the CVD method, J. Cryst. Growth, 233 (4) (2001) 823-828.
DOI: 10.1016/s0022-0248(01)01606-2
Google Scholar
[22]
S. P. Chai, S. H. S. Zein, A. R. Mohamed, Synthesizing carbon nanotubes and carbon nanofibers over supported-nickel oxide catalysts via catalytic decomposition of methane, Diam. Relat. Mater. 16(8) (2007) 1656-1664.
DOI: 10.1016/j.diamond.2007.02.011
Google Scholar
[23]
H. N. Lin, Y. H. Chang, J. H. Yen, J. H. Hsu, C. Leu, M. H. Hon, Selective growth of vertically aligned carbon nanotubes on nickel oxide nanostructures created by atomic force microscope nano-oxidation, Chem. Phys. Lett. 399(4-6) (2004) 422-425.
DOI: 10.1016/j.cplett.2004.10.040
Google Scholar
[24]
M. Kumar, Y. Ando, Carbon nanotube synthesis and growth mechanism, InTech. (2011).
Google Scholar
[25]
J. P. Gore A. Sane, Flame synthesis of carbon nanotubes, Carbon Nanotubes: Synthesis, Characterization, Applications, InTech. (2011).
DOI: 10.5772/21012
Google Scholar
[26]
S. Amelinckx, X. Zhang, D. Bernaerts, X. Zhang, V. Ivanov, J. Nagy, A formation mechanism for catalytically grown helix-shaped graphite nanotubes, Sci. 265(5172) 635-639.
DOI: 10.1126/science.265.5172.635
Google Scholar
[27]
P. Moodley, J. Loos, J. Niemantsverdriet, P. Thüne, Is there a correlation between catalyst particle size and CNT diameter? Carbon. 47(8) (2009) 2002-(2013).
DOI: 10.1016/j.carbon.2009.03.046
Google Scholar
[28]
P. J. Harris, Solid state growth mechanisms for carbon nanotubes, Carbon. 45(2) (2007) 229-239.
DOI: 10.1016/j.carbon.2006.09.023
Google Scholar