TEM and XRD Analysis of Carbon Nanotubes Synthesised from Flame

Article Preview

Abstract:

A premixed flame burner system was utilised to synthesise carbon nanotubes (CNTs). The morphologies of highly-graphitic carbon nanotubes were characterised by using transmission electron microscopy (TEM) and X-ray powder diffraction (XRD). The XRD analysis shows the spectrum of a typical CNT, while TEM imaging shows the physical structure of the carbon nanotubes. CNTs were grown effectively on a Ni-contained substrate in an elevated temperature environment. The flame synthesised CNTs were of high crystalline, multi-wall structure, and contained relatively less impurities and amorphous carbon. The CNT intershell spacing values quantified using TEM and XRD are 0.317 nm and 0.344 nm respectively. CNTs produced from flame synthesis are based on the tip-growth model and vapor-liquid-solid (VLS) mechanism.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

470-475

Citation:

Online since:

December 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Iijima, Helical microtubules of graphitic carbon, nature, 354(7) (1991) 56-58.

DOI: 10.1038/354056a0

Google Scholar

[2] L. Schadler, S. Giannaris, P. Ajayan, Load transfer in carbon nanotube epoxy composites, Appl. Phys. Lett. 73(26) (1998) 3842-3844.

DOI: 10.1063/1.122911

Google Scholar

[3] X. Xu, M. M. Thwe, C. Shearwood, K. Liao, Mechanical properties and interfacial characteristics of carbon-nanotube-reinforced epoxy thin films, Appl. Phys. Lett. 81(15) (2002) 2833-2835.

DOI: 10.1063/1.1511532

Google Scholar

[4] A. Allaoui, S. Bai, H. -M. Cheng, J. Bai, Mechanical and electrical properties of a MWNT/epoxy composite, Compos. Sci. Tech. 62(15) (2002) 1993-(1998).

DOI: 10.1016/s0266-3538(02)00129-x

Google Scholar

[5] X. Sheng, B. Wouters, T. Breugelmans, A. Hubin, I. F. Vankelecom, P. P. Pescarmona, Cu/Cu x O and Pt nanoparticles supported on multi-walled carbon nanotubes as electrocatalysts for the reduction of nitrobenzene, Appl. Catalysis B-Environm. 147 (2014).

DOI: 10.1016/j.apcatb.2013.09.006

Google Scholar

[6] D. S. Su, R. Schlögl, Nanostructured carbon and carbon nanocomposites for electrochemical energy storage applications, Chem. Sus. Chem. 3(2) (2010) 136-168.

DOI: 10.1002/cssc.200900182

Google Scholar

[7] W. H. Tan, S. L. Lee, J. -H. Ng, W. W. F. Chong, C. T. Chong, Characterization of carbon nanotubes synthesized from hydrocarbon-rich flame, I. J. Tech. 7(2) (2016) 343-351.

DOI: 10.14716/ijtech.v7i2.3284

Google Scholar

[8] J. M. Singer, J. Grumer, Carbon formation in very rich hydrocarbon-air flames—I. Studies of chemical content, temperature, ionization and particulate matter, Symp. Int. Combust. Proc. 7(1) (1958) 559-569.

DOI: 10.1016/s0082-0784(58)80092-2

Google Scholar

[9] Y. Y. Li, C. C. Hsieh, Synthesis of carbon nanotubes by combustion of a paraffin wax candle, Micro. Nano. Lett. 2(3) (2007) 63-66.

DOI: 10.1049/mnl:20070035

Google Scholar

[10] W. C. Hu, T. H. Lin, Ethanol flame synthesis of carbon nanotubes in deficient oxygen environments, Nanotech. 27(16) (2016) 165602.

DOI: 10.1088/0957-4484/27/16/165602

Google Scholar

[11] C. Zhuo, B. Hall, H. Richter, Y. Levendis, Synthesis of carbon nanotubes by sequential pyrolysis and combustion of polyethylene, Carbon. 48(14) (2010) 4024-4034.

DOI: 10.1016/j.carbon.2010.07.007

Google Scholar

[12] F. Xu, X. Liu, D. T. Stephen, Synthesis of carbon nanotubes on metal alloy substrates with voltage bias in methane inverse diffusion flames, Carbon. 44(3) (2006) 570-577.

DOI: 10.1016/j.carbon.2005.07.043

Google Scholar

[13] J. Camacho, A. R. Choudhuri, Effects of fuel compositions on the structure and yield of flame synthesized carbon nanotubes, Fullerene, Nanotubes Carbon Nanostr. 15(2) (2007) 99-111.

DOI: 10.1080/15363830601177826

Google Scholar

[14] B. Demczyk, Y. Wang, J. Cumings, M. Hetman, W. Han, A. Zettl, R. Ritchie, Direct mechanical measurement of the tensile strength and elastic modulus of multiwalled carbon nanotubes, Mater. Sci. Eng. 334(1-2) (2002) 173-178.

DOI: 10.1016/s0921-5093(01)01807-x

Google Scholar

[15] W. Zhu, D. Miser, W. Chan, M. Hajaligol, Characterization of multiwalled carbon nanotubes prepared by carbon arc cathode deposit, Mater. Chem. Phys. 82(3) (2003) 638-647.

DOI: 10.1016/s0254-0584(03)00341-9

Google Scholar

[16] A. Cao, C. Xu, J. Liang, D. Wu, B. Wei, X-ray diffraction characterization on the alignment degree of carbon nanotubes, Chem. Phys. Lett. 344 (1-2) (2001) 13-17.

DOI: 10.1016/s0009-2614(01)00671-6

Google Scholar

[17] S. Rols, R. Almairac, L. Henrard, E. Anglaret, J. -L. Sauvajol, Diffraction by finite-size crystalline bundles of single wall nanotubes, Eur. Phys. J. - B 10(2) (1999) 263-270.

DOI: 10.1007/s100510050854

Google Scholar

[18] H. Kuzmany, W. Plank, M. Hulman, C. Kramberger, A. Grüneis, T. Pichler, H. Peterlik, H. Kataura, Y. Achiba, Determination of SWCNT diameters from the Raman response of the radial breathing mode, Eur. Phys. J. - B 22(3) (2001) 307-320.

DOI: 10.1007/s100510170108

Google Scholar

[19] A. Charlier, E. McRae, R. Heyd, M. Charlier, D. Moretti, Classification for double-walled carbon nanotubes, Carbon. 37(11) (1999) 1779-1783.

DOI: 10.1016/s0008-6223(99)00046-9

Google Scholar

[20] C. M. Chen, Y. M. Dai, J. G. Huang, J. -M. Jehng, Intermetallic catalyst for carbon nanotubes (CNTs) growth by thermal chemical vapor deposition method, Carbon. 44(9)0 (2006) 1808-1820.

DOI: 10.1016/j.carbon.2005.12.043

Google Scholar

[21] L. Ci, B. Wei, C. Xu, J. Liang, D. Wu, S. Xie, W. Zhou, Y. Li, Z. Liu, D. Tang, Crystallization behavior of the amorphous carbon nanotubes prepared by the CVD method, J. Cryst. Growth, 233 (4) (2001) 823-828.

DOI: 10.1016/s0022-0248(01)01606-2

Google Scholar

[22] S. P. Chai, S. H. S. Zein, A. R. Mohamed, Synthesizing carbon nanotubes and carbon nanofibers over supported-nickel oxide catalysts via catalytic decomposition of methane, Diam. Relat. Mater. 16(8) (2007) 1656-1664.

DOI: 10.1016/j.diamond.2007.02.011

Google Scholar

[23] H. N. Lin, Y. H. Chang, J. H. Yen, J. H. Hsu, C. Leu, M. H. Hon, Selective growth of vertically aligned carbon nanotubes on nickel oxide nanostructures created by atomic force microscope nano-oxidation, Chem. Phys. Lett. 399(4-6) (2004) 422-425.

DOI: 10.1016/j.cplett.2004.10.040

Google Scholar

[24] M. Kumar, Y. Ando, Carbon nanotube synthesis and growth mechanism, InTech. (2011).

Google Scholar

[25] J. P. Gore A. Sane, Flame synthesis of carbon nanotubes, Carbon Nanotubes: Synthesis, Characterization, Applications, InTech. (2011).

DOI: 10.5772/21012

Google Scholar

[26] S. Amelinckx, X. Zhang, D. Bernaerts, X. Zhang, V. Ivanov, J. Nagy, A formation mechanism for catalytically grown helix-shaped graphite nanotubes, Sci. 265(5172) 635-639.

DOI: 10.1126/science.265.5172.635

Google Scholar

[27] P. Moodley, J. Loos, J. Niemantsverdriet, P. Thüne, Is there a correlation between catalyst particle size and CNT diameter? Carbon. 47(8) (2009) 2002-(2013).

DOI: 10.1016/j.carbon.2009.03.046

Google Scholar

[28] P. J. Harris, Solid state growth mechanisms for carbon nanotubes, Carbon. 45(2) (2007) 229-239.

DOI: 10.1016/j.carbon.2006.09.023

Google Scholar