Separation of Non-Natural Carboxyl Amino Acid Enantiomers by Capillary Electrophoresis with CM-β-Cyclodextrins as Chiral Selective Reagent

Article Preview

Abstract:

A method was built to separate three kinds of enantiomers of non-natural carboxyl amino acid with CE while CM-β-CD acted as chiral selective reagent. Several different β-CD derivatives were used as the chiral separation agent, and it was proved that CM-β-CD had the advantage of chiral selectivity for carboxyl amino acids. Three kinds of enantiomers of carboxyl amino acids were separated by CE in a 50 μm i.d.×60 cm (effective length 45 cm) fused-silica capillary at 20 kV voltages and 10 mM NaH2PO4 solution served as running buffer solution with 10 mM CM-β-CD serving as selective reagent. The optimum detection wavelength was 214nm.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

540-544

Citation:

Online since:

December 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y. M. Zhao, L. L. Sun, M. D. Knierman, N. J. Dovichi, Fast separation and analysis of reduced monoclonal antibodies with capillary zone electrophoresis coupled to mass spectrometry, J. Talanta. 148 (2016) 529-533.

DOI: 10.1016/j.talanta.2015.11.020

Google Scholar

[2] G. J. P. Deblonde, A. Chagnes, G. Cote, J. Vial, I. Rivals, N. Delaunay, Development of a capillary electrophoresis method for the analysis in alkaline media as polyoxoanions of two strategic metals: Niobium and tantalum, J. Chromatog. A. 1437 (2016).

DOI: 10.1016/j.chroma.2016.01.075

Google Scholar

[3] C. S. I Shim, M. S. Kim, et al, On -line sample cleanup and chiral separation ofgemifloxacin in a urinary solution using chiral crown ether asa chiral selector inmicrochip electrophoresis, J. Chromatog. A. 1055 (2004) 241.

DOI: 10.1016/j.chroma.2004.08.124

Google Scholar

[4] M. Maftouh, et al, Electrophoretic separation strategy for chiral pharmaceuticals using highly -sulfated and neutral cyclo dextrins based dual selector systems, J. AnalChim Acta, 525 (2004) 247.

DOI: 10.1016/j.aca.2004.07.031

Google Scholar

[5] Y. Liu, X. F. Fu, C. Ma, J. S. Zhong, Y. P. Liao, H. W. Liu, Chiral separation of raltitrexed by cyclodextrin-modified micellar electrokinetic chromatography, J. Analyt. Bioanalyt. Chem. 393 (2009) 321-326.

DOI: 10.1007/s00216-008-2444-7

Google Scholar

[6] T. Lnoue, P. Jen, et al, Chiral Separation of Fluoxetine and Its Analogs with Charged Cyclodextrins by Capillary Electrophoresis, J. Liquid Chromatog. Relat. Tech. 26 (2003) 2351-2367.

DOI: 10.1081/jlc-120023251

Google Scholar

[7] J. J. Zhang, Y. G. Du, Q. Zhang, Y. T. Lei, Evaluation of vancomycin-based synergistic system with amino acid ester chiral ionic liquids as additives for enantioseparation of non-steroidal anti-inflammatory drugs by capillary electrophoresis, J. Talanta, 119 (2014).

DOI: 10.1016/j.talanta.2013.10.042

Google Scholar

[8] I. Ali, M. M Sanagi, H.Y. Enein, Advances in chiral separations by nonaqueous capillary electrophoresis in pharmaceutical and biomedical analysis, J. Electrophor. 35 (2014) 926-936.

DOI: 10.1002/elps.201300222

Google Scholar

[9] A. Imran, A. L. Zeid, A. L. Abdulrahman, A. Leonid, C. Alexander, Advances in chiral separations of small peptides by capillary electrophoresis and chromatography, J. Separ. Sci. 37 (2014) 2447-2466.

Google Scholar

[10] C. S. Perry, S. A. Charman, J. Richard, C. K. Francis Chiu, J. Martin Scanlon, David Chalmers, William N. Charman, The binding interaction of synthetic ozonide antimalarials with natural and modified β-cyclodextrins, J. Pharmaceut. Sci. 95 (2006).

DOI: 10.1002/jps.20525

Google Scholar

[11] M. C. Waldhier, M. A. Gruber, K. Dettmer, J. Peter Oefner, Capillary electrophoresis and column chromatography in biomedical chiral amino acid analysis, J. Analyt. Bioanalyt. Chem. 394 (2009) 695-706.

DOI: 10.1007/s00216-009-2792-y

Google Scholar

[12] M. Stojanov,  R. Wimmer,  L. Kim Larsen, Study of the inclusion complexes formed between cetirizine and α-, β-, and γ-cyclodextrin and evaluation on their taste-masking properties, J. J. Pharmaceut. Sci. 100 (2011) 3177-3185.

DOI: 10.1002/jps.22539

Google Scholar

[13] N. Ogawa, K. Higashi, H. Nagase, T. Endo, K. Moribe, T. Loftsson, K. Yamamoto, Haruhisa Ueda, Effects of Cogrinding with β-Cyclodextrin on the Solid State Fentanyl, J. Pharmaceut. Sci. 99 (2010) 5019-5029.

DOI: 10.1002/jps.22193

Google Scholar

[14] I. Kwon, S. In Lim, Non-Natural Amino Acids for Protein Engineering and New Protein Chemistries, J. Macromol. Chem. Phys. 214 (2013) 1295-1301.

DOI: 10.1002/macp.201200710

Google Scholar

[15] H. L. Zeng, H. F. Li, X. Wang, J. M. Lin, Chiral separation of FITC-labeled amino acids with gel electrochromatography using a polydimethylsiloxane microfluidic device, J. Capillary Electrop. Microchip Tech. 10 (2007) 9-24.

Google Scholar

[16] S. Zheng, I. Kwon, Controlling enzyme inhibition using an expanded set of genetically encoded amino acids, J. Biotechnol. Bioeng, 110 (2013) 2361-2370.

DOI: 10.1002/bit.24911

Google Scholar