Effect of STAC on Structure of Biotite when Biotite Transform to Hydrated Ba-Mica

Article Preview

Abstract:

After Ba2+/K+ ion exchange, hydrated Ba2+ replaced K+ from interlayer spacing of biotite. original biotite transformed to vermiculite-type hydrated Ba-mica. in order to study the effect of long-chain alkylammonium on biotite after structure changes, biotite, hydrated Ba-mica and mixing mica (A mixture of biotite and hydrated Ba-mica) were used to be modified by STAC (octadecyl trimethylammonium chloride). Fourier transform infrared spectroscopy and powder X-ray diffraction spectroscopywere were used to characterize the obtained samples to reveal the changes of interlayer spacing and basal spacing. The results showed that STA+ could not enter into the interlayer spacing of biotite but enter into that of hydrated Ba-mica and mixing mica. Almost all basal spacing of Ba-mica and mixing mica were increased to 2.8nm.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

567-571

Citation:

Online since:

December 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] W. P. Hettinger, Contribution to catalytic cracking in the petroleum industry, Appl. Clay Sci. 5(91) (1991) 445-468.

DOI: 10.1016/0169-1317(91)90017-4

Google Scholar

[2] Luiz C. A. Oliveiraa, Rachel V. R. A. Riosa, Jose D. Fabris, et. al. Clay-iron oxide magnetic composites for the adsorption of contaminants in water, Appl. Clay Sci. 22(1) (2003) 169-177.

DOI: 10.1016/s0169-1317(02)00156-4

Google Scholar

[3] S. Babel, T. A. Kurniawan, Low-cost adsorbents for heavy metals uptake from contaminated water: a review, J. Hazard. Mater. 97(1) (2003) 219-243.

DOI: 10.1016/s0304-3894(02)00263-7

Google Scholar

[4] E. Manias, G. Hadziioannou, G. T. Brinke, InhoMogeneities in sheared ultrathin lubricating films, Langmuir, 12(1) (1996) 4587-4593.

DOI: 10.1021/la950902r

Google Scholar

[5] F. Hussain, Review article: Polymer-matrix nanocomposites, processing, manufacturing, andapplication: Anoverview, J. Comp. Mater. 1(1) (2006) 1511-1575.

Google Scholar

[6] S. Joly, G. Garnaud, R. Ollitrault, et al. Organically Modified Layered Silicatesas Reinforcing Fillers for Natural Rubber, Chem. Mater. 14(1) (2002) 4202-4208.

DOI: 10.1021/cm020093e

Google Scholar

[7] J. Q. Jiang, Z. Zeng, Comparison of modified montmorillonite adsorbents: Part II, The effects of the type of raw clays and modification conditions on the adsorption performance, Chemosphere, 53(1) (2003) 53-62.

DOI: 10.1016/s0045-6535(03)00449-1

Google Scholar

[8] M. Darder, M. Colilla, E. Ruiz-Hitzky, Chitosan-clay nanocomposites: Application as electro chemical sensors, Appl. Clay Sci. 28(1) (2005) 199-208.

DOI: 10.1016/j.clay.2004.02.009

Google Scholar

[9] M. I. Carretero, M. Pozo, Clay and non-clay minerals in the pharmaceutical industry: Part I. Excipients and medical applications, Appl. Clay Sci. 46(1) (2009) 73-80.

DOI: 10.1016/j.clay.2009.07.017

Google Scholar

[10] C. Aguzzi, P. Cerezo, C. Viseras, et. al. Use of clays as drug delivery systems: Possibilities and limitations, Appl. Clay Sci. 36(1-3) (2007) 22-36.

DOI: 10.1016/j.clay.2006.06.015

Google Scholar

[11] P. Meng, Z. Huang, Z. Q. Li, et. al. Conditions and mechanism for extracting potassium from muscovite in potassium-bearing shale by the barium ion exchange method, Int. J. Miner. Process. 142 (2015) 107-112.

DOI: 10.1016/j.minpro.2015.01.006

Google Scholar

[12] G. J. Ross, H. Kodama, Differential release of potassium from interstratified mica clay minerals as related to probable differences in their mica layer components. Clays Clay Miner. 18 (1970) 151-156.

DOI: 10.1346/ccmn.1970.0180304

Google Scholar

[13] A. D. Scott, R. R. Hunziker, J. J. Hanway, Chemical extraction of potassium from soils and micaceous minerals with solutions containing sodium tetraphenylboron. I. Preliminary experiments. Soil. Sci. Soc. Am. J. 24(3) (1960) 191-194.

DOI: 10.2136/sssaj1960.03615995002400030020x

Google Scholar

[14] R. D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta. Crystallogr. Sect. A. Cryst. Phys. Diffr. Theor. Gen. Crystallogr. 32(5) (1976) 751-767.

DOI: 10.1107/s0567739476001551

Google Scholar

[15] N. T. Skipper, A. K. Soper, J. D. C. Mcconnell, The structure of interlayer water in vermiculite. J. Chem. Phys. 94(8) (1991) 5751-5760.

DOI: 10.1063/1.460457

Google Scholar

[16] V. Stubican, R. Rustum, Isomorphous substitution and infra-redspectra of the layer lattice silicates. Am. Mineral. 46 (1961) 32-51.

Google Scholar

[17] E. Tertre, F. Hubert, S. Bruzac, M. Pacreau, E. Ferrage, D. Prêt, Ion-exchange reactions on clay minerals coupled with advection/dispersion processes. Application to Na + /Ca 2+ exchange on vermiculite: Reactive-transport modeling, batch and stirred flow-through reactor experiments. Geochim. Cosmochim. Acta. 112 (2013).

DOI: 10.1016/j.gca.2013.02.028

Google Scholar

[18] B. Velde, R. Couty, Far infrared spectra of hydrous layer silicates. Phys. Chem. Miner. 12(12) (1985) 347-352.

DOI: 10.1007/bf00654345

Google Scholar

[19] X. F. Yu, L. Y. Zhao, X. X. Gao, X. P. Zhang, N. Z. Wu, The intercalation of cetyltrimethylammonium cations into muscovite by a two-step process: I. The ion exchange of the interlayer cations in muscovite with Li + . J. Solid. State. Chem. 179(5) (2006).

DOI: 10.1016/j.jssc.2006.02.009

Google Scholar