[1]
W. P. Hettinger, Contribution to catalytic cracking in the petroleum industry, Appl. Clay Sci. 5(91) (1991) 445-468.
DOI: 10.1016/0169-1317(91)90017-4
Google Scholar
[2]
Luiz C. A. Oliveiraa, Rachel V. R. A. Riosa, Jose D. Fabris, et. al. Clay-iron oxide magnetic composites for the adsorption of contaminants in water, Appl. Clay Sci. 22(1) (2003) 169-177.
DOI: 10.1016/s0169-1317(02)00156-4
Google Scholar
[3]
S. Babel, T. A. Kurniawan, Low-cost adsorbents for heavy metals uptake from contaminated water: a review, J. Hazard. Mater. 97(1) (2003) 219-243.
DOI: 10.1016/s0304-3894(02)00263-7
Google Scholar
[4]
E. Manias, G. Hadziioannou, G. T. Brinke, InhoMogeneities in sheared ultrathin lubricating films, Langmuir, 12(1) (1996) 4587-4593.
DOI: 10.1021/la950902r
Google Scholar
[5]
F. Hussain, Review article: Polymer-matrix nanocomposites, processing, manufacturing, andapplication: Anoverview, J. Comp. Mater. 1(1) (2006) 1511-1575.
Google Scholar
[6]
S. Joly, G. Garnaud, R. Ollitrault, et al. Organically Modified Layered Silicatesas Reinforcing Fillers for Natural Rubber, Chem. Mater. 14(1) (2002) 4202-4208.
DOI: 10.1021/cm020093e
Google Scholar
[7]
J. Q. Jiang, Z. Zeng, Comparison of modified montmorillonite adsorbents: Part II, The effects of the type of raw clays and modification conditions on the adsorption performance, Chemosphere, 53(1) (2003) 53-62.
DOI: 10.1016/s0045-6535(03)00449-1
Google Scholar
[8]
M. Darder, M. Colilla, E. Ruiz-Hitzky, Chitosan-clay nanocomposites: Application as electro chemical sensors, Appl. Clay Sci. 28(1) (2005) 199-208.
DOI: 10.1016/j.clay.2004.02.009
Google Scholar
[9]
M. I. Carretero, M. Pozo, Clay and non-clay minerals in the pharmaceutical industry: Part I. Excipients and medical applications, Appl. Clay Sci. 46(1) (2009) 73-80.
DOI: 10.1016/j.clay.2009.07.017
Google Scholar
[10]
C. Aguzzi, P. Cerezo, C. Viseras, et. al. Use of clays as drug delivery systems: Possibilities and limitations, Appl. Clay Sci. 36(1-3) (2007) 22-36.
DOI: 10.1016/j.clay.2006.06.015
Google Scholar
[11]
P. Meng, Z. Huang, Z. Q. Li, et. al. Conditions and mechanism for extracting potassium from muscovite in potassium-bearing shale by the barium ion exchange method, Int. J. Miner. Process. 142 (2015) 107-112.
DOI: 10.1016/j.minpro.2015.01.006
Google Scholar
[12]
G. J. Ross, H. Kodama, Differential release of potassium from interstratified mica clay minerals as related to probable differences in their mica layer components. Clays Clay Miner. 18 (1970) 151-156.
DOI: 10.1346/ccmn.1970.0180304
Google Scholar
[13]
A. D. Scott, R. R. Hunziker, J. J. Hanway, Chemical extraction of potassium from soils and micaceous minerals with solutions containing sodium tetraphenylboron. I. Preliminary experiments. Soil. Sci. Soc. Am. J. 24(3) (1960) 191-194.
DOI: 10.2136/sssaj1960.03615995002400030020x
Google Scholar
[14]
R. D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta. Crystallogr. Sect. A. Cryst. Phys. Diffr. Theor. Gen. Crystallogr. 32(5) (1976) 751-767.
DOI: 10.1107/s0567739476001551
Google Scholar
[15]
N. T. Skipper, A. K. Soper, J. D. C. Mcconnell, The structure of interlayer water in vermiculite. J. Chem. Phys. 94(8) (1991) 5751-5760.
DOI: 10.1063/1.460457
Google Scholar
[16]
V. Stubican, R. Rustum, Isomorphous substitution and infra-redspectra of the layer lattice silicates. Am. Mineral. 46 (1961) 32-51.
Google Scholar
[17]
E. Tertre, F. Hubert, S. Bruzac, M. Pacreau, E. Ferrage, D. Prêt, Ion-exchange reactions on clay minerals coupled with advection/dispersion processes. Application to Na + /Ca 2+ exchange on vermiculite: Reactive-transport modeling, batch and stirred flow-through reactor experiments. Geochim. Cosmochim. Acta. 112 (2013).
DOI: 10.1016/j.gca.2013.02.028
Google Scholar
[18]
B. Velde, R. Couty, Far infrared spectra of hydrous layer silicates. Phys. Chem. Miner. 12(12) (1985) 347-352.
DOI: 10.1007/bf00654345
Google Scholar
[19]
X. F. Yu, L. Y. Zhao, X. X. Gao, X. P. Zhang, N. Z. Wu, The intercalation of cetyltrimethylammonium cations into muscovite by a two-step process: I. The ion exchange of the interlayer cations in muscovite with Li + . J. Solid. State. Chem. 179(5) (2006).
DOI: 10.1016/j.jssc.2006.02.009
Google Scholar