[1]
B. Dunn, H. Kamath, J. M. Tarascon, Electrical Energy Storage for the Grid: A Battery of Choices, Sci., 334(6058) (2011)928-935.
DOI: 10.1126/science.1212741
Google Scholar
[2]
Z. Yang, J. Zhang, M.C.W. Kintner-Meyer. et al, Electrochemical Energy Storage for Green Grid, Chem. Rev., 111(5) (2011)3577-3613.
DOI: 10.1021/cr100290v
Google Scholar
[3]
J. B. Goodenough, Y. Kim, Challenges for Rechargeable Li Batteries, Chem. Mater., 22(3) (2010)587-603.
Google Scholar
[4]
G. L. Soloveichik, Battery Technologies for Large-scale Stationary Energy Storage, Annu. Rev. Chem. Biomol. Eng., 2 (2011)503-527.
DOI: 10.1146/annurev-chembioeng-061010-114116
Google Scholar
[5]
J. Li, E Murphy, J. Winnick et al, Studies on the Cycle Life of Commercial Lithium-ion Batteries During Rapid Charge-Discharge Cycling, J. Power Sources, 102(1-2) (2001)294-301.
DOI: 10.1016/s0378-7753(01)00821-7
Google Scholar
[6]
Electricity Storage Association. http: /www. electricitystorage. org/ (accessed Dec. 2011).
Google Scholar
[7]
H. Kim, D. A. Boysen, J.M. Newhouse et al, Liquid Metal Batteries: Past, Present, and Future, Chem. Rev., 113(3) (2013)2075-(2099).
Google Scholar
[8]
J. M. Lu, X. K. Wang, Study on the Lithium-ion Batteries Performance of Electric Vehicles, Adv. Mater. Res., 986-987 (2014)1869-1872.
DOI: 10.4028/www.scientific.net/amr.986-987.1869
Google Scholar
[9]
E. A. Ukshe, N. G. Bukun, The Dissolution of Metals in Fused Halides, Rus. Chem. Rev., 30(2) (1961)90-107.
DOI: 10.1070/rc1961v030n02abeh002955
Google Scholar
[10]
M. A. Bredig. Mixtures of Metals with Molten Salts, ORNL-3391; Oak Ridge National Laboratory: Oak Ridge, TN, (1963).
DOI: 10.2172/940219
Google Scholar
[11]
W. Hoopes, Electrolytically-refined Aluminum and Articles Made Therefrom: U.S. Patent 1, 534, 315. (1925).
Google Scholar
[12]
D. J. Bradwell, H. Kim, A. H. C. Sirk et al, Magnesium−Antimony Liquid Metal Battery for Stationary Energy Storage, J. Am. Chem. Soc., 134(4) (2012)1895-1897.
DOI: 10.1021/ja209759s
Google Scholar
[13]
K. L. Wang, K. Jiang, B. Chung et al, Lithium–Antimony–Lead Liquid Metal Battery for Grid-Level Energy Storage, Nature, 514(7522) (2014)348-350.
DOI: 10.1038/nature13700
Google Scholar
[14]
M. M. Kane, J. M. Newhouse, D. R. Sadoway, Electrochemical Determination of the Thermodynamic Properties of Lithium-Antimony Alloys, J. Electrochem. Soc., 162(3) (2015) A421-A425.
DOI: 10.1149/2.0671503jes
Google Scholar
[15]
X. H. Ning, S. Phadke, B. Chung et al, Self-healing Li-Bi Liquid Metal Battery for Grid-Scale Energy Storage, J. Power Sources, 275 (2015)370-376.
DOI: 10.1016/j.jpowsour.2014.10.173
Google Scholar
[16]
H. J. Kim, D. A. Boysen, T. Ouchi et al, Calciumebismuth Electrodes for Large-Scale Energy Storage(liquid metal batteries), J. Power Sources, 241 (2013)239-248.
DOI: 10.1016/j.jpowsour.2013.04.052
Google Scholar
[17]
T. Ouchi, H. J. Kim, X. H. Ning et al, Calcium-Antimony Alloys as Electrodes for Liquid Metal Batteries, J. Electrochem. Soc., 161(12) (2014) A1898-A1904.
DOI: 10.1149/2.0801412jes
Google Scholar