Overview on the Liquid Metal Battery for Grid-Level Large-Scale Energy Storage

Article Preview

Abstract:

In recent years, the development and utilization of renewable generation have attracted more and more attention, and the grid puts forward higher requirements to the energy storage technology, especially for security, stability and reliability. The liquid metal battery (LMB) consists of two liquid metal electrodes and a molten salt electrolyte, which will be segregated into three liquid layers naturally. Being low-cost and long-life, it is regarded as the best choice for grid-level large-scale energy storage. This paper describes the main structure and working principle of the LMB, analyzes the advantages and disadvantages of the LMB when compared with the traditional batteries, and explores the feasibility and economy when it is used as a kind of large-scale energy storage applied in the power grid. The paper also makes a comprehensive comparison on the performance of several LMBs, and points out the LMB’s research and development in the future.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

572-578

Citation:

Online since:

December 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] B. Dunn, H. Kamath, J. M. Tarascon, Electrical Energy Storage for the Grid: A Battery of Choices, Sci., 334(6058) (2011)928-935.

DOI: 10.1126/science.1212741

Google Scholar

[2] Z. Yang, J. Zhang, M.C.W. Kintner-Meyer. et al, Electrochemical Energy Storage for Green Grid, Chem. Rev., 111(5) (2011)3577-3613.

DOI: 10.1021/cr100290v

Google Scholar

[3] J. B. Goodenough, Y. Kim, Challenges for Rechargeable Li Batteries, Chem. Mater., 22(3) (2010)587-603.

Google Scholar

[4] G. L. Soloveichik, Battery Technologies for Large-scale Stationary Energy Storage, Annu. Rev. Chem. Biomol. Eng., 2 (2011)503-527.

DOI: 10.1146/annurev-chembioeng-061010-114116

Google Scholar

[5] J. Li, E Murphy, J. Winnick et al, Studies on the Cycle Life of Commercial Lithium-ion Batteries During Rapid Charge-Discharge Cycling, J. Power Sources, 102(1-2) (2001)294-301.

DOI: 10.1016/s0378-7753(01)00821-7

Google Scholar

[6] Electricity Storage Association. http: /www. electricitystorage. org/ (accessed Dec. 2011).

Google Scholar

[7] H. Kim, D. A. Boysen, J.M. Newhouse et al, Liquid Metal Batteries: Past, Present, and Future, Chem. Rev., 113(3) (2013)2075-(2099).

Google Scholar

[8] J. M. Lu, X. K. Wang, Study on the Lithium-ion Batteries Performance of Electric Vehicles, Adv. Mater. Res., 986-987 (2014)1869-1872.

DOI: 10.4028/www.scientific.net/amr.986-987.1869

Google Scholar

[9] E. A. Ukshe, N. G. Bukun, The Dissolution of Metals in Fused Halides, Rus. Chem. Rev., 30(2) (1961)90-107.

DOI: 10.1070/rc1961v030n02abeh002955

Google Scholar

[10] M. A. Bredig. Mixtures of Metals with Molten Salts, ORNL-3391; Oak Ridge National Laboratory: Oak Ridge, TN, (1963).

DOI: 10.2172/940219

Google Scholar

[11] W. Hoopes, Electrolytically-refined Aluminum and Articles Made Therefrom: U.S. Patent 1, 534, 315. (1925).

Google Scholar

[12] D. J. Bradwell, H. Kim, A. H. C. Sirk et al, Magnesium−Antimony Liquid Metal Battery for Stationary Energy Storage, J. Am. Chem. Soc., 134(4) (2012)1895-1897.

DOI: 10.1021/ja209759s

Google Scholar

[13] K. L. Wang, K. Jiang, B. Chung et al, Lithium–Antimony–Lead Liquid Metal Battery for Grid-Level Energy Storage, Nature, 514(7522) (2014)348-350.

DOI: 10.1038/nature13700

Google Scholar

[14] M. M. Kane, J. M. Newhouse, D. R. Sadoway, Electrochemical Determination of the Thermodynamic Properties of Lithium-Antimony Alloys, J. Electrochem. Soc., 162(3) (2015) A421-A425.

DOI: 10.1149/2.0671503jes

Google Scholar

[15] X. H. Ning, S. Phadke, B. Chung et al, Self-healing Li-Bi Liquid Metal Battery for Grid-Scale Energy Storage, J. Power Sources, 275 (2015)370-376.

DOI: 10.1016/j.jpowsour.2014.10.173

Google Scholar

[16] H. J. Kim, D. A. Boysen, T. Ouchi et al, Calciumebismuth Electrodes for Large-Scale Energy Storage(liquid metal batteries), J. Power Sources, 241 (2013)239-248.

DOI: 10.1016/j.jpowsour.2013.04.052

Google Scholar

[17] T. Ouchi, H. J. Kim, X. H. Ning et al, Calcium-Antimony Alloys as Electrodes for Liquid Metal Batteries, J. Electrochem. Soc., 161(12) (2014) A1898-A1904.

DOI: 10.1149/2.0801412jes

Google Scholar