[1]
L. Zhang, H. K. Jeon, J. Malsam, R. Herrington, C.W. Macosko, Substituting soybean oil-based polyol into polyurethane flexible foams, Polym. 48(22) (2007) 6656-6667.
DOI: 10.1016/j.polymer.2007.09.016
Google Scholar
[2]
L. Zhang, Structure-Property Relationship of Polyurethane Flexible Foam Made From Natural Oil Polyols, PhD. Thesis, University of Minnesota, Twin Cities, MN, USA, (2008).
Google Scholar
[3]
J. John, M. Bhattacharya, R. B. Turner, Characterization of polyurethane foams from soybean oil, J. Appl. Polym. Sci. 86(12) (2002) 3097-3107.
DOI: 10.1002/app.11322
Google Scholar
[4]
S. S. Narine, X. Kong, L. Bouzidi, P. Sporns, Physical Properties of Polyurethanes Produced from Polyols from Seed Oils: I. Elastomers, J. Am. Oil Chem. Soc. 84(1) (2007) 55-63.
DOI: 10.1007/s11746-006-1006-4
Google Scholar
[5]
J. Shen, S. Amirkhanian, B. Tang, Effects of rejuvenator on performance-based properties of rejuvenated asphalt binder and mixtures, Constr. Build. Mater. 21(5) (2007) 958-964.
DOI: 10.1016/j.conbuildmat.2006.03.006
Google Scholar
[6]
M. Le Guern, E. Chailleux, F. Farcas, S. Dreessen, I. Mabille, Physico-chemical analysis of five hard bitumens: Identification of chemical species and molecular organization before and after artificial aging, Fuel, 89(11) (2010) 3330-3339.
DOI: 10.1016/j.fuel.2010.04.035
Google Scholar
[7]
B. Colbert, Z. You, The properties of asphalt binder blended with variable quantities of recycled asphalt using short term and long term aging simulations, Constr. Build. Mater. 26(1) (2012) 552-557.
DOI: 10.1016/j.conbuildmat.2011.06.057
Google Scholar
[8]
T. Fan, D. Xu, J. Jia, F. Chen, Recycling technology for asphalt concrete pavement and its development in overseas, J. Chongqing Jiaotong Univ. 26 (2007) 82-87.
Google Scholar
[9]
W. Lu, Recycling Principle of Asphalt and Technical Requirement of Recycling Agent, Petrol. Asphalt 6 (2007) 1-6.
Google Scholar
[10]
Z. Xu, W. Tan, D. Guo, Experimental investigation of regenerant for bituminous mixture, Shanxi Architectur. 33 (2007) 76-77.
Google Scholar
[11]
N. Özbay, N. Oktar, N. A. Tapan, Esterification of free fatty acids in waste cooking oils (WCO): Role of ion-exchange resins, Fuel, 87(10-11) (2008) 1789-1798.
DOI: 10.1016/j.fuel.2007.12.010
Google Scholar
[12]
D. Kuang, J. Yu, Z. Cai, X. Song, Effect of rejuvenator on properties of aged bitumen of different aging degree, Highway, 5 (2011) 153-157.
Google Scholar
[13]
X. P. X. Parés, C. Bonnet, O. Morin, Synthesis of new derivatives from vegetable oil methyl esters via epoxidation and oxirane opening. in: G. Knothe, J. T. P. Derksen (Eds. ), Recent Developments in the Synthesis of Fatty Acid Derivative, AOCS Press, Champaign, IL, 1999, 141-156.
DOI: 10.1201/9781439832073.ch9
Google Scholar
[14]
G. J. Suppes, M. A. Dasari, Synthesis and Evaluation of Alkyl Nitrates from Triglycerides as Cetane Improves, Ind. Eng. Chem. Res. 42(21) (2003) 5042-5053.
DOI: 10.1021/ie030015g
Google Scholar
[15]
Adhvarya, Z. Liu, S. Z. Erhan, Synthesis of novel alkoxylated triacylglycerols and their lubricant base oil properties, Ind. Crops Prod. 21(1) (2005) 113-119.
DOI: 10.1016/j.indcrop.2004.02.001
Google Scholar
[16]
P. S. Lathi, B. Mattiasson, Green Approach for the Preparation of Biodegradable Lubricant Base Stock from Epoxidized Vegetable Oil, Appl. Catal. B-Environ. 69(3-4) (2007) 207-212.
DOI: 10.1016/j.apcatb.2006.06.016
Google Scholar
[17]
M. Pagliaro, M. Rossi, Glycerol: Properties and Production. in: J.H. Clark, G.A. Kraus (Eds. ), The Future of Glycerol, second ed., Royal Society of Chemistry, Cambridge, UK, 2010, 1-17.
Google Scholar
[18]
A. U. Israel, I. B. Obot, J .E. Asuquo, Recovery of Glycerol from Spent Soap Lye By-Product of Soap Manufacture, E-J. Chem. 5(4) (2008) 940-945.
DOI: 10.1155/2008/302609
Google Scholar