Self-Healing Polymeric Materials

Article Preview

Abstract:

During the last few years, synthetic self-healing materials have become a new class of emerging smart materials with the ability to repair damage and restore lost or degraded properties or performance using resources inherently available to the system. Success in the design of self-healing materials is important to material safety, product reliability and prolonged lifetime. This article covers fundamental material-independent principles and different self-healing approaches for polymeric materials. Among these approaches, some depend on specific external stimulus to achieve their goal while others regain the physical properties of the pristine material without such external intervention. Both the mechanisms and performance of different methods are discussed and evaluated, along with their advantages and disadvantages. In the end, both the potential application areas and the main challenges are also discussed in this article for a better understanding of future development trend of self-healing polymeric materials.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

482-489

Citation:

Online since:

January 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H. Vahabi, R. Sonnier and L. Ferry: Polym. Int. Vol. 64 (2015), p.313.

Google Scholar

[2] B.J. Blaiszik, S.L.B. Kramer, S.C. Olugebefola, J.S. Moore, N.R. Sottos, and S.R. White: Annu. Rev. Mater. Res. Vol. 40 (2010), p.179.

DOI: 10.1146/annurev-matsci-070909-104532

Google Scholar

[3] D.Y. Wu, S. Meure and D. Solomon: Prog. Polym. Sci. Vol. 33 (2008), p.479.

Google Scholar

[4] R. P. Wool: Soft Matter, Vol. 4 (2008), p.400.

Google Scholar

[5] S. Burattini, B.W. Greenland, D. Chappell, H.M. Colquhoun and W. Hayes: Chem. Soc. Rev. Vol. 39 (2010), p. (1973).

Google Scholar

[6] D. Habault, H.J. Zhang and Y. Zhao: Chem. Soc. Rev. Vol. 42 (2013), p.7244.

Google Scholar

[7] K. Van Tittelboom and N. De Belie: Materials Vol. 6 (2013), p.2182.

Google Scholar

[8] G.O. Fanger: Chemtech Vol. 4 (1974), p.397.

Google Scholar

[9] Y.C. Yuan, T. Yin, M.Z. Rong and M.Q. Zhang, Express Polym. Lett. Vol. 2 (2008), p.238.

Google Scholar

[10] E.N. Brown, M.R. Kessler, N.R. Sottos and S.R. White: J. Microencapsul. Vol. 20 (2003), p.719.

Google Scholar

[11] E.B. Murphy and F. Wudl: Prog. Polym. Sci. Vol. 35 (2010), p.223.

Google Scholar

[12] D.Y. Zhu, M. Z. Rong and M. Q. Zhang: Prog. Polym. Sci. Vol. 49-50 (2015), p.175.

Google Scholar

[13] S.R. White, N.R. Sottos, P.H. Geubelle, J.S. Moore, M.R. Kessler and S.R. Sriram: Nature Vol. 409 (2001), p.794.

Google Scholar

[14] E.N. Brown, N.R. Sottos and S.R. White: Exp. Mech. Vol. 42 (2002), p.372.

Google Scholar

[15] E.N. Brown, S.R. White and N.R. Sottos: Compos. Sci. Technol. Vol. 65 (2005) p.2466.

Google Scholar

[16] E.N. Brown, S.R. White and N.R. Sottos: J. Mater. Sci. Vol. 39 (2004), p.1703.

Google Scholar

[17] G.O. Wilson, M.M. Caruso, N.T. Reimer, S.R. White, N.R. Sottos and J.S. Moore: Chem. Mater. Vol. 20 (2008), p.3288.

Google Scholar

[18] X. Liu, J.K. Lee, S.H. Yoon and M.R. Kessler: J. Appl. Polym. Sci. Vol. 101 (2006), p.1266.

Google Scholar

[19] J.D. Rule, E.N. Brown, N.R. Sottos, S.R. White and J.S. Moore: Adv. Mater. Vol. 17 (2005), p.205.

Google Scholar

[20] A.J. Patel, N.R. Sottos, E.D. Wetzel and S.R. White. Compos. Pt. A Vol. 41 (2010), p.360.

Google Scholar

[21] M.D. Chipara, M. Chipara, E. Shansky and J.M. Zaleski: Vol. 20 (2009), p.427.

Google Scholar

[22] S.H. Cho, M. Andersson, S.R. White, N.R. Sottos and P.V. Braun: Adv. Mater. Vol. 18 (2006), p.997.

Google Scholar

[23] M.W. Keller, S.R. White and N.R. Sottos: Adv. Funct. Mater. Vol. 17 (2007), p.2399.

Google Scholar

[24] T. Yin, M.Z. Rong, M.Q. Zhang and G.C. Yang: Compos. Sci. Technol. Vol. 67 (2007), p.201.

Google Scholar

[25] R. Dowbenko, C.C. Anderson and W.H. Chang: Ind. Eng. Chem. Prod. Res. Dev. Vol. 10 (1971), p.344.

Google Scholar

[26] Y.C. Yuan, M.Z. Rong, M.Q. Zhang, J. Chen, G.C. Yang and X.M. Li: Macromolecules Vol. 41 (2008), p.5197.

Google Scholar

[27] L. Yuan, A. Gu and G. Liang: Mater. Chem. Phys. Vol. 110 (2008), p.417.

Google Scholar

[28] M. Huang and J. Yang: J. Mater. Chem. Vol. 21 (2011), p.11123.

Google Scholar

[29] J. Yang, M.W. Keller, J.S. Moore, S.R. White and N.R. Sottos: Macromolecules Vol. 41 (2008), p.9650.

Google Scholar

[30] C. Suryanarayana, K.C. Rao and D. Kumar: Prog. Org. Coat. Vol. 63 (2008), p.72.

Google Scholar

[31] R.S. Jadhav, D.G. Hundiwale and P.P. Mahulikar: J. Appl. Polym. Sci. Vol. 119 (2011), p.2911.

Google Scholar

[32] Y.K. Song, Y.H. Jo, Y.J. Lim, S.Y. Cho, H.C. Yu, B.C. Ryu, S.I. Lee and C.M. Chung: ACS Appl. Mater. Interfaces Vol. 5 (2013), p.1378.

Google Scholar

[33] M.M. Caruso, D.A. Delafuente, V. Ho, J.S. Moore, N.R. Sottos and S.R. White: Macromolecules Vol. 40 (2007), p.8830.

DOI: 10.1021/ma701992z

Google Scholar

[34] M.M. Caruso, B.J. Blaiszik, S.R. White, N.R. Sottos and J.S. Moore: Adv. Funct. Mater. Vol. 18 (2008), p.1898.

Google Scholar

[35] V.K. Thakur and M.R. Kessler: Polymer Vol. 69 (2015), p.369.

Google Scholar

[36] R.S. Trask, H.R. Williams and I.P. Bond: Bioinsp. Biomim. Vol. 2 (2007) p.1.

Google Scholar

[37] Y.K. Song and C.M. Chung: Polym. Chem. Vol. 4 (2013), p.4940.

Google Scholar

[38] J. Morton and E.W. Godwin: Compos. Struct. Vol. 13 (1989) p.1.

Google Scholar

[39] C. Dry: Compos. Struct. Vol. 35 (1996), p.263.

Google Scholar

[40] C. Dry and W. McMillan: Smart Mater. Struct. Vol. 5 (1996), p.297.

Google Scholar

[41] M. Motuku, U.K. Vaidya and G.M. Janowski: Smart Mater. Struct. Vol. 8 (1999), p.623.

Google Scholar

[42] S.M. Bleay, C.B. Loader, V.J. Hawyes, L. Humberstone and P.T. Curtis: Compos. Pt. A Vol. 32 (2001), p.1767.

Google Scholar

[43] B.Z. Jang, L.C. Chen, L.R. Hwang, J.E. Hawkes and R.H. Zee: Polym. Compos. Vol. 11 (1990), p.144.

Google Scholar

[44] J.W.C. Pang and I.P. Bond: Compos. Sci. Technol. Vol. 65 (2005), p.1791.

Google Scholar

[45] R.S. Trask and I.P. Bond: Smart Mater. Struct. Vol. 15 (2006), p.704.

Google Scholar

[46] D. Therriault, S.R. White and J.A. Lewis: Nat. Mater. Vol. 2 (2003), p.265.

Google Scholar

[47] M. Scheiner, T.J. Dickens and O. Okoli: Polymer Vol. 83 (2016), p.260.

Google Scholar

[48] K.S. Toohey, N.R. Sottos, J.A. Lewis, J.S. Moore, and S.R. White: Nat. Mater. Vol. 6 (2007), p.581.

Google Scholar

[49] K.S. Toohey, C.J. Hansen, J.A. Lewis, S.R. White and N.R. Sottos: Adv. Funct. Mater. Vol. 19 (2009), p.1399.

Google Scholar

[50] C.J. Hansen, W. Wu, K.S. Toohey, N.R. Sottos, S.R. White and J.A. Lewis: Adv. Mater. Vol. 21 (2009), p.4143.

Google Scholar

[51] P.F. Zhang and G.Q. Lia: Prog. Polym. Sci. Vol. 57 (2016), p.32.

Google Scholar

[52] Z. Zhao and E.M. Arruda: Science Vol. 344 (2014), p.591.

Google Scholar

[53] S.R. White, J.S. Moore, N.R. Sottos, B.P. Krull, W.A. Santa Cruz and R.C.R. Gergely: Science Vol. 344 (2014), 620.

Google Scholar

[54] X.F. Luo, R.Q. Ou, D.E. Eberly, A. Singhal, W. Viratyaporn and P.T. Mather: ACS Appl. Mater. Interfaces Vol. 1 (2009), p.612.

DOI: 10.1021/am8001605

Google Scholar

[55] K. O'Connor and R. Wool: J. Appl. Phys. Vol. 51 (1980), p.5075.

Google Scholar

[56] R. Wool and K. O'Connor: J. Appl. Phys. Vol. 52 (1981) p.5953.

Google Scholar

[57] S.J. Kalista and T.C. Ward: J. R. Soc. Interface Vol. 4 (2007), p.405.

Google Scholar

[58] X. Chen, M.A. Dam, K. Ono, A. Mal, H. Shen and S.R. Nutt: Science Vol. 295 (2002) p.1698.

Google Scholar

[59] B. Ghosh and M.W. Urban: Science Vol. 323 (2009), p.1458.

Google Scholar

[60] S.D. Bergman and F. Wudl: J. Mater. Chem. Vol. 18 (2008), p.41.

Google Scholar

[61] Y. Yang and M.W. Urban: Chem. Soc. Rev. Vol. 42 (2013), p.7446.

Google Scholar

[62] M. Stevens and A. Jenkins: J. Polym. Sci. Vol. 17 (1979), p.3675.

Google Scholar

[63] C. M. Chung, Y. S. Roh, S. Y. Cho and J. G. Kim: Chem. Mater. Vol. 16 (2004), p.3982.

Google Scholar

[64] G. Deng, C. Tang, F. Li, H. Jiang and Y. Chen: Macromolecules Vol. 43 (2010), p.1191.

Google Scholar

[65] J. A. Yoon, J. Kamada, K. Koynov, J. Mohin, R. Nicolay, Y. Zhang, A. C. Balazs, T. Kowalewski and K. Matyjaszewski: Macromolecules Vol. 45 (2012), p.142.

DOI: 10.1021/ma2015134

Google Scholar

[66] M.D. Hager, P. Greil, C. Leyens, S. van der Zwaag and U.S. Schubert: Adv. Mater. Vol. 22 (2010), p.5424.

DOI: 10.1002/adma.201003036

Google Scholar

[67] P. Cordier, F. Tournilhac, C. Soulié-Ziakovic and L. Leibler: Nature Vol. 451 (2008), p.977.

DOI: 10.1038/nature06669

Google Scholar

[68] F. Herbst, D. Dohler, P. Michael and W.H. Binder: Macromol. Rapid Commun. Vol. 34 (2013), p.203.

Google Scholar

[69] S. Burattini, H. M. Colquhoun, J. D. Fox, D. Friedmann, B. W. Greenland, P. J. F. Harris, W. Hayes, M. E. Mackay and S. J. Rowan: Chem. Commun. 2009 p.6717.

DOI: 10.1039/b910648k

Google Scholar

[70] M. Samadzadeh, S.H. Boura, M. Peikari, S.M. Kasiriha and A. Ashrafi: Prog. Org. Coat Vol. 68 (2010), p.159.

Google Scholar

[71] A. Kumara, L.D. Stephenson and J.N. Murray: Prog. Org. Coat. Vol. 55 (2006), p.244.

Google Scholar

[72] M. Zhu, M.Z. Rong and M.Q. Zhang: Polym. Int. Vol. 63 (2014), p.1741.

Google Scholar

[73] M.M. Caruso, S.R. Schelkopf, A.C. Jackson, A.M. Landry, P.V. Braun and J.S. Moore: J. Mater. Chem. Vol. 19 (2009), p.6093.

Google Scholar

[74] S.A. Odom, T.P. Tyler, M.M. Caruso, J.A. Ritchey, M.V. Schulmerich and S.J. Robinson: Appl. Phys. Lett. Vol. 101 (2012), article number. 043106.

Google Scholar

[75] Y. Tao, H.P. Wu and Z.G. Yang: J. Fudan Univ. (Nat. Sci. ) Vol. 51(2012), p.231.

Google Scholar

[76] S.A. Odom, S. Chayanupatkul, B.J. Blaiszik, O. Zhao, A.C. Jackson and P.V. Braun: Adv. Mater. Vol. 24 (2012), p.2578.

Google Scholar