The Properties of Polyimide Fibers Modified by Functionalized Muti-Wall Carbon Nanotubes Based on Friedel-Crafts Acylation

Abstract:

Article Preview

Muti-wall carbon nanotubes (MWCNTs) were functionalized by grafting polyimide (PI) on their surface via Friedel-Crafts acylation. The functionalized MWCNTs (f-MWCNTs) showd less damages than unfunctionalized ones. The partially imidized polyamide acid as-spun fibers containing f-MWCNTs were prepared by wet spinning, and the final PI/f-MWCNTs composite fibers were obtained by heat treatment. The tensile strength of the PI based composite fiber containing 1.0 wt% f-MWCNTs was 818.3 MPa and the Young’s modulus was 9.26 GPa, which were about 81% and 88% higher than those of pure PI fiber, respectively. Besides, the thermal stability of PI/f-MWCNTs composite fibers was obviously improved.

Info:

Periodical:

Edited by:

Linqing Luo and Gui Chun Huang

Pages:

490-496

Citation:

Y. F. Wang et al., "The Properties of Polyimide Fibers Modified by Functionalized Muti-Wall Carbon Nanotubes Based on Friedel-Crafts Acylation", Key Engineering Materials, Vol. 727, pp. 490-496, 2017

Online since:

January 2017

Export:

Price:

$38.00

* - Corresponding Author

[1] S.K. Park, R.J. Farris: Polymer, Vol. 42 (2001), P. 10087.

[2] P. Yan, B. Zhou, A. Du: RSC. Adv., Vol. 4 (2014), P. 58252.

[3] W.H. Liao, S.Y. Yang, S.T. Hsiao: ACS applied materials & interfaces, Vol. 6 (2014), P. 15802.

[4] J. Lim, H. Yeo, M. Goh: Chem. Mater., Vol. 27 (2015), P. (2040).

[5] T. Ogasawara, Y. Ishida, T. Ishikawa: Composites Part A, Vol. 35 (2004), P. 67.

[6] B.P. Singh, D. Singh, R.B. Mathur: Nanoscale Res. Lett., Vol. 3 (2008), P. 444.

[7] S.M. Yuen, C.C.M. Ma, Y.Y. Lin: Compos. Sci. Technol., Vol. 67 (2007), P. 2564.

[8] C. Cui, W. Qian, M. Zhao: Carbon, Vol. 60 (2013), P. 102.

[9] Y. Chen, J. Qian, X. Teng: Mater. Res. Express, Vol. 1 (2014), P. 025027.

[10] J.B. Baek, C.B. Lyons, L.S. Tan: J. Mater. Chem., Vol. 14 (2004), P. (2052).

[11] H.J. Lee, S.J. Oh, J.Y. Choi: Chem. Mater., Vol. 17 (2005), P. 5057.

[12] H.J. Lee, S.W. Han, Y.D. Kwon: Carbon, Vol. 46 (2008), P. 1850.

[13] I.Y. Jeon, J. Il Choi, S.G. Lee: J. Phys. Chem. C, Vol. 114 (2010), P. 14868.

[14] I.Y. Jeon, S.W. Kang, L.S. Tan: J. Polym. Sci. Pol. Chem., Vol. 48 (2010), P. 3103.

[15] I.Y. Jeon, L.S. Tan, J.B. Baek: J. Polym. Sci. Part A: Polym. Chem., Vol. 48 (2010), P. (1962).

[16] T.S. Balaban, M.C. Balaban, S. Malik: Advanced Materials, Vol. 18 (2006), P. 2763.

[17] P. Zhang, D. Qiu, H. Chen: J. Mater. Chem. A, Vol. 3 (2015), P. 1442.

[18] T. Liu, Y. Tong, W.D. Zhang: Compos. Sci. Technol., Vol. 67 (2007), P. 406.

[19] C. Wang, Y. Guo, Y. Yang: ACS. Appl. Mater. Interfaces, Vol. 6 (2014), P. 4321.

[20] X.L. Wu: eXPRESS Polym. Lett., Vol. 4 (2010), P. 723.

[21] H.L. Tyan, Y.C. Liu, K.H. Wei: Polymer, Vol. 40 (1999), P. 4877.

[22] F.A. de Jesus, S.T.S. Santos, J.M.A. Caiut: J Lumin, Vol. 170 (2016), P. 588.

[23] H.W. Ha, A. Choudhury, T. Kamal: ACS. Appl. Mater. Interfaces, Vol. 4 (2012), P. 4623.

[24] X. Zhao, Q. Zhang, D. Chen: Macromolecules, Vol. 43 (2010), P. 2357.

Fetching data from Crossref.
This may take some time to load.