[1]
Q. Tao, D M. Yu, A J. Zhang, et al. Life cycle assessment on olylactide-based wood plastic composites toughened with polyhydroxyalkanoates. Journal of Cleaner Production, 2014(66): 139-145.
DOI: 10.1016/j.jclepro.2013.11.074
Google Scholar
[2]
A. Mohammed, Binhussain, M. Maher, et al. Palm leave and plastic waste wood composite for out-door structures. Construction and Building Materials, 2013(47): 1431-1435.
DOI: 10.1016/j.conbuildmat.2013.06.031
Google Scholar
[3]
S.K. Yeh, K G. Rakesh, Improved wood–plastic composites through better processing. Composites: Part A, 2008(39): 1694-1699.
DOI: 10.1016/j.compositesa.2008.07.013
Google Scholar
[4]
J. Li, Trends of China's wood plastic composite market. China Wood-based Panels Magazine, 2014(2): 1-3.
Google Scholar
[5]
E. L. Chen, Simply analyse the applications of wood- plastic composite on landscape. Construction×Building Materials×Decoration, 2014(6): 153-154.
Google Scholar
[6]
J. J. Li, D. G. Li, Y. Guo, et al. Study on waterproof property of new wood-plastic composite siding. New Building Materials, 2010, 37(8): 51-54.
Google Scholar
[7]
K. Michael, K. Markus, S. Ortmann, Use of natural fibers in composites in the German and Austrian automotive industry. Technical Textiles, 2003, 46(2): 73-74.
Google Scholar
[8]
N. Guan, The development potential of wood polymer composites. International Wood Industry, 2014(2): 18.
Google Scholar
[9]
M. D. Azaman, S. M. Sapuan, S. Sulaiman, et al. Shrinkages and warpage in the processability of wood-filled polypro- pylene composite thin-walled parts formed by injection molding. Materials and Design, 2013, 52: 1018-1026.
DOI: 10.1016/j.matdes.2013.06.047
Google Scholar
[10]
E. Soury, A. H. Behravesh, E. Rouhani, et al. Design, optimization and manufacturing of wood-plastic composite pallet. Materials and Design, 2009, 30 (10): 4183-4191.
DOI: 10.1016/j.matdes.2009.04.035
Google Scholar
[11]
Z. H. Ge, N. J. Yuan, W. B. Chen, et al. Optimal design of injection molding screw for WPC. Plastic, 2011, 40(6): 98-102.
Google Scholar
[12]
H. L. Zhang. Effect of a novel coupling agent, alkyl ketene dimer, on the mechanical properties of wood– plastic composites. Materials and Design, 2014, 59: 130-134.
DOI: 10.1016/j.matdes.2014.02.048
Google Scholar
[13]
M. B. N. Sonia, S. C. Graziela and M. L. R. Simone, New polymeric-coupling agent for polypropylene/wood-flour composites. Polymer Testing, 2007, 26(5): 619-627.
DOI: 10.1016/j.polymertesting.2007.03.007
Google Scholar
[14]
Y. S. Zhao, K. J. Wang, F. H. Zhu, et al. Properties of poly (vinyl chloride)/wood flour/ montmorillonite composites: Effects of coupling agents and layered silicate. Polymer Degradation and Stability, 2006, 91(12): 2874-2883.
DOI: 10.1016/j.polymdegradstab.2006.09.001
Google Scholar
[15]
Q. C. Gao, H. Z. Cai, Optimization of alkaline treatment conditions of rice hull powder of wood-plastic composite. Practical forestry technology, 2012(8): 58-60.
Google Scholar
[16]
G. J. Lu, W. H. Wang and H. G. Wang, Wood-plastic composites reinforced by modified basalt fibers. Journal of southwest forestry university, 2014, 34(2): 89-94.
Google Scholar
[17]
T. Yates, K. Khunti, J. Troughton, et al. Study of Fire Retardancy and Thermal and Mechanical Properties of HDPE-Wood Composites. Journal of Wood Chemistry & Technology, 2015, 35(6): 412-423.
DOI: 10.1080/02773813.2015.1011277
Google Scholar
[18]
G. R. Wang, Development and application of overseas wood-plastic composite. Forestry machinery & woodworking equipment, 2010, 38(7): 43-44.
Google Scholar
[19]
Y. Lei, Q. L. Wu. High density polyethylene and poly(ethylene terephthalate)in situ sub-micro-fibril blends as a matrix for wood plastic composites . Composites: Part A, 2013(43): 73-78.
DOI: 10.1016/j.compositesa.2011.09.012
Google Scholar
[20]
K. Yasamin, C. Alain and R. Denis, Design analysis of three-layered structural composites based on post-consumer recycled plastics and wood residues. Composites: Part A, 2013(53): 1-9.
DOI: 10.1016/j.compositesa.2013.06.002
Google Scholar
[21]
X. L. Cai, F. Zheng, K. W. Huan, et al. Measurement of thermochromic material spectral transmittance spectra. Journal of Changchun University of science and technology (Natural science edition), 2012, 35(1): 109-111.
Google Scholar
[22]
Y. W. Wang, Z. F. Yang, Synthesis of two kinds of photochromic spiropyrane compounds containing tertiary butyl. Journal of Shanxi university (Natural science edition), 2013, 36(3): 431-435.
Google Scholar
[23]
X. Z. Zhang, The research of environment friendly optics color-change material. New material new decoration, 2013(5): 4-6.
Google Scholar
[24]
M. Chen, S. W. Yang, J. M. Zheng, et al. Synthesis of a novel triphenylamine derivative and exploration of self-powered electrochromic device. Acta chimica sinica, 2013, 71: 713-716.
DOI: 10.6023/a13010091
Google Scholar
[25]
P. Liu, X. Q. Zhao, L. Guan, et al. Synthesis and electrochromic properties of novel oligothiophene derivatives. Materials research and application, 2010, 4(4): 321-324.
Google Scholar
[26]
GB/T 1040-2006, Plastics-Determination of Tensile Properties, General Administration of Quality Supervision, Inspection and Quarantine, 2006, China.
Google Scholar
[27]
GB/T 9341-2008, Plastics-determination of flexural properties, General Administration of Quality Supervision, Inspection and Quarantine, 2008, China.
Google Scholar
[28]
GB/T 1043. 1-2008, Plastics-Determination of Charpy impact properties. Part 1: Non-instrumented impact test., General Administration of Quality Supervision, Inspection and Quarantine, 2008, China.
DOI: 10.3403/02224310u
Google Scholar
[29]
E. Cernoskova, Z. Cernosek and J. Holubova, High-temperature dynamic thermo-mechanical analysis of NBS 711 glassy fiber. Journal of non-crystalline solids, 2003, 326: 141-145.
DOI: 10.1016/s0022-3093(03)00393-4
Google Scholar
[30]
L. Onic, V. Bucur, M. P. Ansell, et al. Dynamic thermome -chanical analysis as a control technique for thermoset bonding of wood joints. International journal of adhesion and adhesives, 1998, 18(2): 89-94.
DOI: 10.1016/s0143-7496(97)00049-3
Google Scholar
[31]
U. D. Çakmak, Z. Major, Experimental Thermomechanical Analysis of Elastomers Under Uni-and Biaxial Tensile Stress State. Experimental Mechanics, 2014, 54(4): 653-663.
DOI: 10.1007/s11340-013-9820-8
Google Scholar
[32]
K. J. Wang, Study on preparation and microencapsulation of organic reversible thermochromatic compound. Fine & Specialty Chemicals, 2008, 16(7): 24-26.
Google Scholar
[33]
R. D. Douglas, Color stability of new-generation indirect resins for prosthodontic application. Journal of Prosthetic Dentistry, 2000, 83(2): 166-170.
DOI: 10.1016/s0022-3913(00)80008-6
Google Scholar