Morphology Control and Photoluminescent Properties of Bundled ZnO Nanorods Array Based on Silicon Nanoporous Pillar Array

Article Preview

Abstract:

A silicon nanoporous pillar array (Si-NPA) is a silicon hierarchical structure with regularly patterned surface morphology. An array of bundled ZnO nanorods was grown based on Si-NPA by a catalyst-free thermal evaporation method. The morphology of ZnO/Si-NPA was found to be greatly affected by the growth parameters such as the grown temperature and the ratio nitrogen and oxygen. The room-temperature photoluminescence (PL) spectrum of ZnO/Si-NPA showed a violet emission at ∼410 nm and a blue-green emission around 500 nm, which were attributed to the PL of Si-NPA substrate and oxygen vacancies of ZnO, respectively. The results indicated that ZnO/Si-NPA is a promising optical material.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

598-603

Citation:

Online since:

January 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Z.Y. Zhang and H.M. Xiong: Materials, Vol. 8 (2015) No. 6, p.3101.

Google Scholar

[2] R. Kumar, G. Kumar, O. Al-Dossary and A. Umar: Materials Express, Vol. 5 (2015) No. 1, p.3.

Google Scholar

[3] B.L. Williams, M.V. Ponomarev, M.A. Verheijen, H.C.M. Knoops, A. Chandramohan, L. Duval, M.C.M. Sanden and M. Creatore: Plasma Processes and Polymers, Vol. 13 (2016) No. 1, p.54.

DOI: 10.1002/ppap.201500179

Google Scholar

[4] M.C. Larciprete and M. Centini: Applied Physics Reviews, Vol. 2 (2015) No. 3, p.031302.

Google Scholar

[5] Y. Hou, Z. Mei and X. Du: Journal of Physics D-Applied Physics, Vol. 47 (2014) No. 28, p.283001.

Google Scholar

[6] R. Zou, G. He, K. Xu, Q. Liu, Z. Zhang and J. Hu: Journal of Materials Chemistry A, Vol. 1 (2013) No. 29, p.8445.

Google Scholar

[7] E. Molaakbari, A. Mostafavi, H. Beitollahi and R. Alizadeh: Analyst, Vol. 139 (2014) No. 17, p.4356.

Google Scholar

[8] K.T. Park, F. Xia, S.W. Kim, S.B. Kim, T. Song, U. Paik and W.I. Park: Journal of Physical Chemistry C, Vol. 117 (2013) No. 2, p.1037.

Google Scholar

[9] C. Han, Z. Chen, N. Zhang, J.C. Colmenares and Y.J. Xu: Advanced Functional Materials, Vol. 25 (2015) No. 2, p.221.

Google Scholar

[10] H.J. Xu and X.J. Li: Optics Express, Vol. 16 (2008) No. 5, p.2933.

Google Scholar

[11] H.J. Xu and X.J. Li: Applied Physics Letters, Vol. 91 (2007) No. 20, p.201912.

Google Scholar

[12] Y. Li, X.Y. Song, Y.L. Song, P.F. Ji, F.Q. Zhou, M.L. Tian, H.C. Huang and X.J. Li: Materials Research Bulletin, Vol. 74 (2016) No. 1, p.507.

Google Scholar

[13] H.J. Xu and X.J. Li: Semiconductor Science and Technology, Vol. 24 (2009) No. 7, p.075008.

Google Scholar

[14] X.J. Li and W.F. Jiang: Nanotechnology, Vol. 18 (2007) No. 6, p.065203.

Google Scholar

[15] F. Feng, G. Zhi, H.S. Jia, L. Cheng, Y.T. Tian and X.J. Li: Nanotechnology, Vol. 20 (2009) No. 29, p.295501.

Google Scholar

[16] A.B. Djurisic and Y.H. Leung: Small, Vol. 2 (2006) No. 8, pp.944-961.

Google Scholar

[17] M.M. Brewster, X. Zhou, M.Y. Lu and S. Gradecak: Nanoscale, Vol. 4 (2012) No. 5, p.1455.

Google Scholar

[18] S. Dutta, S. Chattopadhyay, A. Sarkar, M. Chakrabarti, D. Sanyal and D. Jana: Progress In Materials Science, Vol. 54 (2009) No. 1, p.89.

Google Scholar

[19] M. Kahouli, A. Barhoumi, A. Bouzid, A. Al-Hajry and S. Guermazi: Superlattices and Microstructures, Vol. 85 (2015) No. 1, p.7.

DOI: 10.1016/j.spmi.2015.05.007

Google Scholar

[20] Y. Liu and Y. Tong: Journal of Nanoscience and Nanotechnology, Vol. 8 (2008) No. 3, p.1101.

Google Scholar

[21] J. Lim, K. Shin, H.W. Kim and C. Lee: Materials Science and Engineering: B Vol. 107 (2004) No. 1, p.301.

Google Scholar