Up-Conversion Luminescence Properties of Ho3+ Doped and Yb3+/Ho3+ Co-Doped Y2WO6 Phosphors

Article Preview

Abstract:

In this article, Ho3+ doped and Yb3+/ Ho3+ co-doped Y2WO6 phosphors were successfully prepared via high temperature solid method. Their structures were investigated with X-ray diffraction, the up-conversion (UC) excitation from a 980 nm diode laser, and the developed phosphor shown two UC emission bands in the visible region 540 and 643 nm. Based on the result, the intensity of the frequency up-conversion emission was enhanced significantly through co-doping with Yb3+ ions in the Y2WO6: Ho3+ phosphor. The dependence of emission intensity on the pump power indicated that the up-conversion emission was a two-photon process. At last, the energy level diagrams was discussed. The results show that Y2WO6 is a promising host material for UC phosphors.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

618-622

Citation:

Online since:

January 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Garskaite E, Lindgren M, Einarsrud M A, et al. Luminescent properties of rare earth (Er, Yb) doped yttrium aluminium garnet thin films and bulk samples synthesised by an aqueous sol–gel technique[J]. Journal of the European Ceramic Society, 2010, 30(7): 1707-1715.

DOI: 10.1016/j.jeurceramsoc.2010.01.001

Google Scholar

[2] Xu W, Zhao H, Li Y, et al. Optical temperature sensing through the up-conversion luminescence from Ho3+/Yb3+ co-doped CaWO4[J]. Sensors and Actuators B: Chemical, 2013, 188: 1096-1100.

DOI: 10.1016/j.snb.2013.07.094

Google Scholar

[3] Gavrilović T V, Jovanović D J, Smits K, et al. Multicolor up-conversion luminescence of GdVO4: Ln3+/Yb3+(Ln3+= Ho3+, Er3+, Tm3+, Ho3+/Er3+/Tm3+) nanorods[J]. Dyes and Pigments, 2016, 126: 1-7.

DOI: 10.1016/j.dyepig.2015.11.005

Google Scholar

[4] He F, Niu N, Wang L, et al. Influence of surfactants on the morphology, up-conversion emission, and magnetic properties of β-NaGdF4: Yb3+, Ln3+ (Ln= Er, Tm, Ho)[J]. Dalton Transactions, 2013, 42(27): 10019-10028.

DOI: 10.1039/c3dt00029j

Google Scholar

[5] Luo X, Cao W. Up-conversion luminescence of holmium and ytterbium co-doped yttrium oxysulfide phosphor[J]. Materials Letters, 2007, 61(17): 3696-3700.

DOI: 10.1016/j.matlet.2006.12.021

Google Scholar

[6] Glaspell G, Anderson J, Wilkins J R, et al. Vapor Phase Synthesis of Up-converting Y2O3 Nanocrystals Doped with Yb3+, Er3+, Ho3+, and Tm3+ to Generate Red, Green, Blue, and White Light[J]. The Journal of Physical Chemistry C, 2008, 112(30): 11527-11531.

DOI: 10.1021/jp801597u

Google Scholar

[7] Wang F, Liu X. Recent advances in the chemistry of lanthanide-doped up-conversion nanocrystals[J]. Chemical Society Reviews, 2009, 38(4): 976-989.

Google Scholar

[8] Lim C S. Highly modulated structure and up-conversion photoluminescence properties of PbGd2 (MoO4)4: Er3+/ Yb3+ phosphors[J]. Materials Research Bulletin, 2016, 75: 211-216.

DOI: 10.1016/j.materresbull.2015.11.058

Google Scholar

[9] Haugsrud R. Defects and transport properties in Ln6WO12 (Ln= La, Nd, Gd, Er)[J]. Solid State Ionics, 2007, 178(7): 555-560.

DOI: 10.1016/j.ssi.2007.01.004

Google Scholar

[10] Du H Y, Liu Z X, Sun J Y. Photostimulated Luminescence Studies of Electron Trapping Materials SrS: Eu2+, RE (RE= Dy3+, Yb3+, Pr3+, Ho3+, Tm3+)[C]/ 2011: 264-267.

Google Scholar

[11] Soni A K, Rai V K. Intrinsic optical bistability and frequency up-conversion in Tm3+–Yb3+-codoped Y2WO6 phosphor[J]. Dalton Transactions, 2014, 43(36): 13563-13570.

DOI: 10.1039/c4dt01266f

Google Scholar

[12] Sun J Y, Xue B, Di Q M, et al. Hydrothermal Synthesis and Up-conversion Properties of Yb3+, Tm3+ Co-Doped Gd6MoO12 Phosphor with Regular Morphologies[J]. Applied Mechanics & Materials, 2014, 597: 109-112.

Google Scholar

[13] Shan J, Qin X, Yao N, et al. Synthesis of monodisperse hexagonal NaYF4: Yb, Ln (Ln = Er, Ho and Tm) up-conversion nanocrystals in TOPO[J]. Nanotechnology, 2007, 18(44): 16700-16700.

DOI: 10.1088/0957-4484/18/44/445607

Google Scholar

[14] Kaczmarek A M, Van Hecke K, Van Deun R. Enhanced luminescence in Ln3+-doped Y2WO6 (Sm, Eu, Dy) 3D microstructures through Gd3+ co-doping[J]. Inorganic chemistry, 2014, 53(18): 9498-9508.

DOI: 10.1021/ic5005837

Google Scholar

[15] Huang J, Xu J, Li H, et al. Determining the structure of tetragonal Y2WO6 and the site occupation of Eu3+ dopant[J]. Journal of Solid State Chemistry, 2011, 184(4): 843-847.

DOI: 10.1016/j.jssc.2011.02.015

Google Scholar

[16] Beaury O, Faucher M, de Sagey G T, et al. Investigation of a new structural type for Y2WO6[J]. Materials Research Bulletin, 1978, 13(9): 953-957.

DOI: 10.1016/0025-5408(78)90107-1

Google Scholar

[17] Llanos J, Olivares D, Manríquez V, et al. Synthesis and luminescent properties of two different Y2WO6 : Eu3+, phosphor phases[J]. Journal of Alloys & Compounds, 2015, 628: 352-356.

DOI: 10.1016/j.jallcom.2014.12.161

Google Scholar

[18] Li X, Nie Q, Dai S, et al. Energy transfer and frequency up-conversion in Ho3+/Yb3+ co-doped bismuth-germanate glasses[J]. Journal of Alloys and Compounds, 2008, 454(1): 510-514.

DOI: 10.1016/j.jallcom.2007.02.143

Google Scholar

[19] Etchart I, Hernández I, Huignard A, et al. Efficient oxide phosphors for light up-conversion; green emission from Yb3+ and Ho3+ co-doped Ln2BaZnO5 (Ln= Y, Gd)[J]. Journal of Materials Chemistry, 2011, 21(5): 1387-1394.

DOI: 10.1039/c000127a

Google Scholar

[20] Zheng K, Wang L, Zhang D, et al. Power switched multiphoton up-conversion emissions of Er3+ in Yb3+/Er3+ co-doped β-NaYF4 microcrystals induced by 980 nm excitation[J]. Optics express, 2010, 18(3): 2934-2939.

DOI: 10.1364/oe.18.002934

Google Scholar

[21] Gomes L, Courrol L C, Tarelho L V G, et al. Cross-relaxation process between +3 rare-earth ions in LiYF4 crystals[J]. Physical review B, 1996, 54(6): 3825.

Google Scholar

[22] Shan Z, Chen D, Yu Y, et al. Up-conversion luminescence of Ho3+ sensitized by Yb3+ in transparent glass ceramic embedding BaYF5 nanocrystals[J]. Materials Research Bulletin, 2010, 45(8): 1017-1020.

DOI: 10.1016/j.materresbull.2010.04.004

Google Scholar