Study on Physical and Photoluminescence Properties of Er3+Doped Zinc Barium Tellurite Glasses

Article Preview

Abstract:

Er3+-doped ZnO – BaO – TeO2 glasses with the formula (80-x)TeO2–15ZnO–5BaO–xEr2O3 were fabricated using melt quenching technique. The 5 glass samples with different concentrations of Er2O3 were prepared under atmospheric pressure. The samples were investigated on their properties: density, molar volume, absorption spectra and photoluminescence. Density was increased with an increase in Er3+ content. The molar volume trend is in the opposite way to that of the density. The absorption bands are assigned as absorptions from the 4I15/2 ground state to the 4F7/2, 2H11/2, 4S3/2, 4F9/2, 4I9/2, 4I11/2 and 4I13/2 levels. All absorption bands are increase with increasing content of Er3+. The photoluminescence spectra were measured with 980 nm light pumped by flash lamp. The spectra trends to increase with increasing concentration of the dopant.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

155-159

Citation:

Online since:

January 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A.E. Ersundu, G. Karaduman, M. C¸ elikbilek, N. Solak, S. Aydin, Stability of the δ-TeO2 Phase in the Binary and Ternary TeO2 Glasses, J Eur Ceram Soc. 30 (2010) 3087–3092.

DOI: 10.1016/j.jeurceramsoc.2010.07.018

Google Scholar

[2] J. Ozdanova, H. Ticha, L. Tichy, Remark on the optical gap in ZnO–Bi2O3–TeO2 glasses, J Non-Cryst Solids. 353 (2007) 2799–2802.

DOI: 10.1016/j.jnoncrysol.2007.06.017

Google Scholar

[3] P. Mosnera, K. Vosejpkova, L. Koudelka, L. Montagne, B. Revel, A review of the structures of oxide glasses by Raman spectroscopy, Mater Chem Phys. 124 (2010) 732–737.

Google Scholar

[4] G. Gao, L. Hua, H. Fan, G. Wang, K. Li, S. Feng, S. Fan, H. Chen, J. Pan, J. Zhang, Investigation of 2. 0 μm emission in Tm3+ and Ho3+ co-doped TeO2–ZnO–Bi2O3 glasses, Opt Mater. 32 (2009) 402–405.

DOI: 10.1016/j.optmat.2009.07.003

Google Scholar

[5] H. Lin, E.Y.B. Pun, X.R. Liu, Investigation on the Physical and Optical Properties of Dy3+Doped Soda-Lime-Silicate Glasses, J. Non-Cryst Solids. 283 (2001) 27-33.

Google Scholar

[6] H. Jinag, Y. Jianquan, Er3+-doped tellurofluorophosphate glasses for lasers and optical amplifiers, Opt. Commun. 251 (2005) 132-138.

Google Scholar

[7] C.H. Yeh, C.C. Lee, S. Chi, Utilizations of two-stage erbium amplifier and saturable-absorber filter for tunable and stable power-equalized fiber laser, Opt. Commun, 241 (2004) 333-338.

DOI: 10.1364/oe.15.003680

Google Scholar

[8] S. Agrawal, V. Dubey, J. Radiat. Res. Down conversion luminescence behavior of Er and Yb doped Y2O3 phosphor, Appl Sci. 7 (2014) 601–606.

DOI: 10.1016/j.jrras.2014.09.014

Google Scholar

[9] N. Ohashi, N. Ebisawa, T. Sekiguchi, I. Sakaguchi, Y. Wada, T. Takenaka, H. Haneda, Growth of Thick Zinc Magnesium Oxide by Liquid Phase Epitaxy, Appl Phys Lett. 86 (2005) 395-412.

DOI: 10.1063/1.1871349

Google Scholar

[10] B. Liu, W. Ting, S. Zhen, L. Zhao-Hui, L. Jia-Xu, L. Quan-Lin, Photoluminescence properties of Ce3+ and Mn2+-activated Ba9Sc2Si6O24 phosphor for white light emitting diodes, Chin Phys B. 22 (2013) 779-801.

Google Scholar

[11] J.S. Kim, J.Y. Kang, P.E. Jeon, J.C. Choi, H.L. Park, T.W. Kim, Ca7. 97- xMg(SiO4)4Cl2: Eu0. 03, Dx (D=Y, Gd, Mn) Phosphor Particles Prepared by Spray Pyrolysis, Jpn J Appl Phys. 43 (2004) 989-995.

Google Scholar

[12] Z. Yong, H. Qiong, N. Qiao-Li, Z. Shu-Wen, L. Shu-Ti, H. Miao, F. Guang-Han Chin, Synthesis and down-conversion luminescence properties of Er3+/Yb3+ co-doped AlF3-PbF2-CaF2 powders, Phys Lett. 26 (2009) 811-819.

DOI: 10.1016/j.optmat.2015.04.004

Google Scholar

[13] C. Ming, F. Song, L. An, X. Ren, Controllable photoluminescence by melting-process temperature in SnO-containing glass, Mater Lett. 137 (2014) 117–119.

Google Scholar

[14] B. Dong, D.P. Liu, X.J. Wang, T. Yang, S.M. Miao, C.R. Li, Optical thermometry through infrared excited green upconversion emissions in Er3+–Yb3+Er3+–Yb3+ codoped Al2O3, Appl Phys Lett. 90 (2007) 117-123.

DOI: 10.1063/1.2735955

Google Scholar

[15] B. Wang, R.M. Guo, X.J. Wang, L. Wang, Z. Zhou, Composition dependence of the Yb-participated strong up-conversions in polycrystalline ErYb silicate, Opt Mater. 34 (2012)1289–1293.

DOI: 10.1016/j.optmat.2012.02.001

Google Scholar

[16] B.S. Cao, Y.Y. He, L. Zhang, B. Dong, Upconversion properties of Er3+–b3+: NaYF4 phosphors with a wide range of Yb3+ concentration, J Lumin. 135 (2013) 128–132.

DOI: 10.1016/j.jlumin.2012.10.031

Google Scholar

[17] J. Yang, S. Xiao, J. Ding, X. Yang, X. Wang, J, Preparation and photoluminescence properties of SrY2O4: Yb3+, Er3+ powders, Alloys Compd. 474 (2009) 424–427.

DOI: 10.1016/j.jallcom.2008.06.158

Google Scholar

[18] J. Sokolnicki, Upconversion Luminescence from Er3+ in Nanocrystalline Y2Si2O7: Er3+ and Y2Si2O7: Yb3+Er3+ Phosphors, Mater Chem Phys. 131 (2011) 306–312.

DOI: 10.1016/j.matchemphys.2011.09.046

Google Scholar

[19] Y. Dwivedi, K. Mishra, S.B. Rai, Synthesis and down-conversion luminescence properties of Er3+/Yb3+ co-doped AlF3-PbF2-CaF2 powders, J. Alloys Compd. 572 (2013) 90–96.

DOI: 10.1016/j.optmat.2015.04.004

Google Scholar

[20] S.F. Zou, Z.L. Zhang, F. Zhang, Y.L. Mao, High efficient quantum cutting in Ce3+/Yb3+co-doped oxyfluoride glasses, J Alloys Compd. 572 (2013) 110–112.

DOI: 10.1016/j.jallcom.2013.03.287

Google Scholar

[21] B. Tian, B. Chen, Y. Tian, J. Sun, X. Li, J. Zhang, H. Zhong, L. Cheng, Z. Wu, R. Hua, Visible quantum cutting in BaGd2ZnO5: Eu3+ phosphor, Ceram Int. 38 (2012) 3537–3540.

DOI: 10.1016/j.ceramint.2011.12.068

Google Scholar

[22] B. Liu, Y. Chen, C. Shi, H. Tang, Y. Tao, Visible quantum cutting in BaF2: Gd, Eu via downconversion, J Lumin. 101 (2003) 155–159.

DOI: 10.1016/s0022-2313(02)00408-8

Google Scholar

[23] Maurice, E., Monnom, G., Dussardier, B., Saissy, A., Ostrowsky, D.B., Baxter G.W., Erbium-doped silica fibers for intrinsic fiber-optic temperature sensors, Applied Optics. 34 (1995) 8019-8025.

DOI: 10.1364/ao.34.008019

Google Scholar