[1]
W. J. Quadakkers, J. Piron-Abellan, V. Shemet, L. Singheiser, Metallic interconnectors for solid oxide fuel cells - a review, Mater. High Temp. 20 (2003) 115–127.
DOI: 10.3184/096034003782749071
Google Scholar
[2]
S. Linderoth, P.V. Hendriksen, M. Morgensen, N. Langvad, Investigations of metallic alloys for use as interconnects in solid oxide fuel cell stacks, J. Mat. Sci. 31 (1996) 5077.
DOI: 10.1007/bf00355908
Google Scholar
[3]
S. Taniguchi, M. Kadowaki, H. Kawamura, T. Yasuo, Y. Akiyama, Y. Miyake, T. Saitoh, Degradation phenomena in the cathode of a solid oxide fuel cell with an alloy separator, J. Power Sources 55 (1995) 73–79.
DOI: 10.1016/0378-7753(94)02172-y
Google Scholar
[4]
Z. Yang, G. -G. Xia, X. -H. Li, J.W. Stevenson, (Mn, Co)3O4 spinel coatings on ferritic stainless steels for SOFC interconnect applications, Int. J. Hydrog. Energy 32 (2007) 3648.
DOI: 10.1016/j.ijhydene.2006.08.048
Google Scholar
[5]
J.H. Zhu, Y. Zhang, A. Basu, Z.G. Lu, M. Paranthaman, D.F. Lee, E.A. Payzant, LaCrO3-based coatings on ferritic stainless steel for solid oxide fuel cell interconnect applications, Surf. Coat. Technol. 177–178 (2004) 65.
DOI: 10.1016/j.surfcoat.2003.05.003
Google Scholar
[6]
E. A Lee, S. Leea, H.J. Hwang, J. -W. Moon, Sol–gel derived (La0. 8M0. 2)CrO3 (M=Ca, Sr) coating layer on stainless-steel substrate for use as a separator in intermediate-temperature solid oxide fuel cell, J. Power Sources 157 (2006) 709.
DOI: 10.1016/j.jpowsour.2005.12.030
Google Scholar
[7]
T. Brylewskia, J. Dabeka, K. Przybylskia, J. Morgielb, M. Rekasa, Screen-printed (La, Sr)CrO3 coatings on ferritic stainless steel interconnects for solid oxide fuel cells using nanopowders prepared by means of ultrasonic spray pyrolysis, J. Power Sources 208 (2012).
DOI: 10.1016/j.jpowsour.2012.02.015
Google Scholar
[8]
W. Wongpromrat, G. Berthomé, V. Parry, S. Chandra-ambhorn, W. Chandra-ambhorn, C. Pascal, A. Galerie, Y. Wouters, Reduction of chromium volatilisation from stainless steel interconnector of solid oxide electrochemical devices by controlled preoxidation, Corrosion Science, 106 (2016).
DOI: 10.1016/j.corsci.2016.02.002
Google Scholar
[9]
H. Kurokawa, K. Kawamura, T. Maruyama, Oxidation behavior of Fe–16Cr alloy interconnect for SOFC under hydrogen potential gradient, Solid State Ionics 168 (2004) 13.
DOI: 10.1016/j.ssi.2004.02.008
Google Scholar
[10]
Wongpromrat W., Thaikan H., Chandra-Ambhorn W., Chandra-Ambhorn S., Chromium Vaporisation from AISI 441 Stainless Steel Oxidised in Humidified Oxygen, Oxidation of Metals, 79 (5-6), 2013, 529-540.
DOI: 10.1007/s11085-013-9379-x
Google Scholar
[11]
K. Ngamkham, N. Klubvihok, J. Tungtrongpairoj, S. Chandra-ambhorn, Relationship between entry temperature and properties of thermal oxide scale on low carbon steel strips, Steel Res. Inter. (2012) 991-994.
Google Scholar
[12]
S. Chandra-ambhorn, K. Ngamkham, N. Jiratthanakul, Effects of Process Parameters on Mechanical Adhesion of Thermal Oxide Scales on Hot-Rolled Low Carbon Steels, Oxidation of Metals. 80 (2013) 61-72.
DOI: 10.1007/s11085-013-9370-6
Google Scholar
[13]
T. Nilsonthi, J. Tungtrongpairoj, S. Chandra-ambhorn, Y. Wouters, A. Galerie, Effect of silicon on formation and mechanical adhesion of thermal oxide scale grown on low carbon steels in a hot-rolling line, Steel Res. Inter. (2012) 987-990.
DOI: 10.1108/acmm-07-2018-1974
Google Scholar
[14]
T. Nilsonthi, S. Chandra-ambhorn, Y. Wouters, A. Galerie, Adhesion of Thermal Oxide Scales on Hot-Rolled Conventional and Recycled Steels, Oxidation of Metals 79 (2013) 325-335.
DOI: 10.1007/s11085-012-9356-9
Google Scholar
[15]
S. Chandra-ambhorn, T. Nilsonthi, Y. Wouters, A. Galerie, Oxidation of simulated recycled steels with 0. 23 and 1. 03wt. % Si in Ar–20%H2O at 900°C, Corrosion Science, 87 (2014) 101-110.
DOI: 10.1016/j.corsci.2014.06.018
Google Scholar
[16]
P. Promdirek, G. Lothongkum, S. Chandra-ambhorn, Y. Wouters, A. Galerie, Oxidation Kinetics of AISI 441 Ferritic Stainless Steel at High Temperatures in CO2 Atmosphere, Oxidation of Metals 81 (2014) 315-329.
DOI: 10.1007/s11085-013-9432-9
Google Scholar
[17]
W. Wongpromrat, V. Parry, F. Charlot, A. Crisci, L. Latu-Romain, W. Chandra-Ambhorn, S. Chandra-Ambhorn, A. Galerie, Y. Wouters, Possible connection between nodule development and presence of niobium and/or titanium during short time thermal oxidation of AISI 441 stainless steel in wet atmosphere, Mater. High Temp. 32 (20158), 22-27.
DOI: 10.1179/0960340914z.00000000057
Google Scholar
[18]
M. Stanislowski, J. Froitzheim, L. Niewolak, W.J. Quadakkers, K. Hilpert, T. Markus, L. Singheiser, Reduction of chromium vaporization from SOFC interconnectors by highly effective coatings, J. Power Sources 164 (2007) 578–589.
DOI: 10.1016/j.jpowsour.2006.08.013
Google Scholar