Chromia Evaporation of Ferritic Stainless Steel AISI430 Coated by (La,Sr)CrO3 Perovskite and Mn-Co Oxide Spinel

Article Preview

Abstract:

A ferritic stainless steel has been intensively studied for its potential in application as an interconnect for a solid oxide fuel cell (SOFC). However, at such a high operating temperature chromia in the gaseous phase can contaminate the cathode of the SOFC, and consequently the performance of the device degrades rapidly. To overcome this problem, two kind of ceramics, (La,Sr)CrO3 perovskite and Mn-Co oxide spinel were prepared as coatings on the stainless steel AISI 430 to investigate on chromia evaporation at 800°C. In this present work, the (La,Sr)CrO3 and Co-Mn layers were formed by a sol-gel dip coating and an electrodeposition technique, respectively. The coatings were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), rates of oxidation and rates of chromia evaporation. The coated specimens exhibited the protective behavior with a lower rate of oxidation, as well as a lower rate of chromium evaporation than the uncoated specimen both in the atmosphere of dry and humidified oxygen. But the reduction of the chromia evaporation rates of (La,Sr)CrO3 coatings was insignificant due to the presence of Cr2O3 phase in the coatings.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

166-171

Citation:

Online since:

January 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] W. J. Quadakkers, J. Piron-Abellan, V. Shemet, L. Singheiser, Metallic interconnectors for solid oxide fuel cells - a review, Mater. High Temp. 20 (2003) 115–127.

DOI: 10.3184/096034003782749071

Google Scholar

[2] S. Linderoth, P.V. Hendriksen, M. Morgensen, N. Langvad, Investigations of metallic alloys for use as interconnects in solid oxide fuel cell stacks, J. Mat. Sci. 31 (1996) 5077.

DOI: 10.1007/bf00355908

Google Scholar

[3] S. Taniguchi, M. Kadowaki, H. Kawamura, T. Yasuo, Y. Akiyama, Y. Miyake, T. Saitoh, Degradation phenomena in the cathode of a solid oxide fuel cell with an alloy separator, J. Power Sources 55 (1995) 73–79.

DOI: 10.1016/0378-7753(94)02172-y

Google Scholar

[4] Z. Yang, G. -G. Xia, X. -H. Li, J.W. Stevenson, (Mn, Co)3O4 spinel coatings on ferritic stainless steels for SOFC interconnect applications, Int. J. Hydrog. Energy 32 (2007) 3648.

DOI: 10.1016/j.ijhydene.2006.08.048

Google Scholar

[5] J.H. Zhu, Y. Zhang, A. Basu, Z.G. Lu, M. Paranthaman, D.F. Lee, E.A. Payzant, LaCrO3-based coatings on ferritic stainless steel for solid oxide fuel cell interconnect applications, Surf. Coat. Technol. 177–178 (2004) 65.

DOI: 10.1016/j.surfcoat.2003.05.003

Google Scholar

[6] E. A Lee, S. Leea, H.J. Hwang, J. -W. Moon, Sol–gel derived (La0. 8M0. 2)CrO3 (M=Ca, Sr) coating layer on stainless-steel substrate for use as a separator in intermediate-temperature solid oxide fuel cell, J. Power Sources 157 (2006) 709.

DOI: 10.1016/j.jpowsour.2005.12.030

Google Scholar

[7] T. Brylewskia, J. Dabeka, K. Przybylskia, J. Morgielb, M. Rekasa, Screen-printed (La, Sr)CrO3 coatings on ferritic stainless steel interconnects for solid oxide fuel cells using nanopowders prepared by means of ultrasonic spray pyrolysis, J. Power Sources 208 (2012).

DOI: 10.1016/j.jpowsour.2012.02.015

Google Scholar

[8] W. Wongpromrat, G. Berthomé, V. Parry, S. Chandra-ambhorn, W. Chandra-ambhorn, C. Pascal, A. Galerie, Y. Wouters, Reduction of chromium volatilisation from stainless steel interconnector of solid oxide electrochemical devices by controlled preoxidation, Corrosion Science, 106 (2016).

DOI: 10.1016/j.corsci.2016.02.002

Google Scholar

[9] H. Kurokawa, K. Kawamura, T. Maruyama, Oxidation behavior of Fe–16Cr alloy interconnect for SOFC under hydrogen potential gradient, Solid State Ionics 168 (2004) 13.

DOI: 10.1016/j.ssi.2004.02.008

Google Scholar

[10] Wongpromrat W., Thaikan H., Chandra-Ambhorn W., Chandra-Ambhorn S., Chromium Vaporisation from AISI 441 Stainless Steel Oxidised in Humidified Oxygen, Oxidation of Metals, 79 (5-6), 2013, 529-540.

DOI: 10.1007/s11085-013-9379-x

Google Scholar

[11] K. Ngamkham, N. Klubvihok, J. Tungtrongpairoj, S. Chandra-ambhorn, Relationship between entry temperature and properties of thermal oxide scale on low carbon steel strips, Steel Res. Inter. (2012) 991-994.

Google Scholar

[12] S. Chandra-ambhorn, K. Ngamkham, N. Jiratthanakul, Effects of Process Parameters on Mechanical Adhesion of Thermal Oxide Scales on Hot-Rolled Low Carbon Steels, Oxidation of Metals. 80 (2013) 61-72.

DOI: 10.1007/s11085-013-9370-6

Google Scholar

[13] T. Nilsonthi, J. Tungtrongpairoj, S. Chandra-ambhorn, Y. Wouters, A. Galerie, Effect of silicon on formation and mechanical adhesion of thermal oxide scale grown on low carbon steels in a hot-rolling line, Steel Res. Inter. (2012) 987-990.

DOI: 10.1108/acmm-07-2018-1974

Google Scholar

[14] T. Nilsonthi, S. Chandra-ambhorn, Y. Wouters, A. Galerie, Adhesion of Thermal Oxide Scales on Hot-Rolled Conventional and Recycled Steels, Oxidation of Metals 79 (2013) 325-335.

DOI: 10.1007/s11085-012-9356-9

Google Scholar

[15] S. Chandra-ambhorn, T. Nilsonthi, Y. Wouters, A. Galerie, Oxidation of simulated recycled steels with 0. 23 and 1. 03wt. % Si in Ar–20%H2O at 900°C, Corrosion Science, 87 (2014) 101-110.

DOI: 10.1016/j.corsci.2014.06.018

Google Scholar

[16] P. Promdirek, G. Lothongkum, S. Chandra-ambhorn, Y. Wouters, A. Galerie, Oxidation Kinetics of AISI 441 Ferritic Stainless Steel at High Temperatures in CO2 Atmosphere, Oxidation of Metals 81 (2014) 315-329.

DOI: 10.1007/s11085-013-9432-9

Google Scholar

[17] W. Wongpromrat, V. Parry, F. Charlot, A. Crisci, L. Latu-Romain, W. Chandra-Ambhorn, S. Chandra-Ambhorn, A. Galerie, Y. Wouters, Possible connection between nodule development and presence of niobium and/or titanium during short time thermal oxidation of AISI 441 stainless steel in wet atmosphere, Mater. High Temp. 32 (20158), 22-27.

DOI: 10.1179/0960340914z.00000000057

Google Scholar

[18] M. Stanislowski, J. Froitzheim, L. Niewolak, W.J. Quadakkers, K. Hilpert, T. Markus, L. Singheiser, Reduction of chromium vaporization from SOFC interconnectors by highly effective coatings, J. Power Sources 164 (2007) 578–589.

DOI: 10.1016/j.jpowsour.2006.08.013

Google Scholar