Effect of Dealloying Conditions on Nanoporous Surface of Cu-Zn Alloy

Article Preview

Abstract:

This research aims to develop a porous layer surface using two steps: the radio frequency (R.F.) sputtering and dealloying. The glass substrate was firstly coated with Cu-Zn using the R.F. sputtering method. Then nano-porous layer surface is produced by dealloying-corrosion to dissolve unwanted element (Zn) from the base metal (Cu). The characterization techniques are scanning electron microscope (FE-SEM) for topographical analysis, X-ray fluorescent (XRF) for chemical analysis, and potentiostat for electrochemical measurement. It was found that the coated specimens obtained by R.F. sputtering are uniformly distributed by Cu-Zn alloys on the substrate’s surface. In addition, after dealloying, it was found that the diameter of the ligament size and pore size are in the nano-scale over the substrate’s surface.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

181-186

Citation:

Online since:

January 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G.C. Bond, D.T. Thompson, Catalysis reviews, Sci Eng Ethics. 41 (1999) 319–388.

Google Scholar

[2] T. You, O. Niwa, M. Tomita, S. Hirono, Characterization of platinum nanoparticle-embedded carbon film electrode and its detection of hydrogen peroxide, Anal Chem. 75 (2003) 2080–(2085).

DOI: 10.1021/ac026337w

Google Scholar

[3] J.R. Weissmueller, N. Viswanath, D. Kramer, P. Zimmer, R. Wuerschum, H. Gleiter, Charge-induced reversible strain in a metal, Science. 300 (2003) 312–315.

DOI: 10.1002/chin.200329012

Google Scholar

[4] S.H. Joo, S.J. Choi, K.J. Kwa, Z. Liu, O. Terasaki, R. Ryoo, Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles, Nature. 412 (2001) 169–172.

DOI: 10.1038/35084046

Google Scholar

[5] C. Perego, R. Millini, Porous materials in catalysis: challenges for mesoporous materials. Chem Soc. 42 (2013) 3956-3976.

DOI: 10.1039/c2cs35244c

Google Scholar

[6] W.B. Liu, S.C. Zhang, N. Li, J.W. Zheng, Y.L. Xing, A facile one-pot route to fabricate nanoporous copper with controlled hierarchical pore size distributions through chemical dealloying of Al–Cu alloys in an alkaline solution. Micropor Mesopor Mat. 138 (2011).

DOI: 10.1016/j.micromeso.2010.10.003

Google Scholar

[7] O. Okman, J.W. Kysar, Fabrication of crack-free blanket nanoporous gold thin films by galvanostatic dealloying, J Alloy Compd. 509 (2011) 6374–6381.

DOI: 10.1016/j.jallcom.2011.02.115

Google Scholar

[8] S.L. Zhu, J.L. He, X.J. Yang, Z.D. Cui, L.L. Pi, Ti oxide nano- porous surface structure prepared by dealloying of Ti–Cu amorphous alloys, Electrochem Commun. 13 (2011) 250–253.

DOI: 10.1016/j.elecom.2010.12.025

Google Scholar

[9] Q. Zhang, X. Wang, Z. Qi, Y. Wang, Z. Zhang, A benign route to fabricate nanoporous gold through electrochemical dealloying of Al–Au alloys in a neutral solution, Electrochim Acta. 54 (2009) 6190–6198.

DOI: 10.1016/j.electacta.2009.05.089

Google Scholar

[10] C. Zhao, X. Wang, Z. Qi, H. Ji, Z. Zhang, On the electrochemical dealloying of Mg–Cu alloys in a NaCl aqueous solution, Corros Sci. 52 (2010) 3962–3972.

DOI: 10.1016/j.corsci.2010.08.005

Google Scholar

[11] H.J. Qiu, L. Peng, X. Li, H.T. Xu, Y. Wang, Using corrosion to fabricate various nanoporous metal structures, Corros Sci. 92 (2015) 16–31.

DOI: 10.1016/j.corsci.2014.12.017

Google Scholar

[12] S. Van Petegem, S. Brandstetter, R. Maass, A.M. Hodge, B.S. El-Dasher, J. Biener, B. Schmitt, C. Borca, H. V. Swygenhoven, The microstructure of nanoporous gold: an x-ray diffraction study, Nano Lett. 9 (2009) 1158–1163.

DOI: 10.1021/nl803799q

Google Scholar

[13] L.H. Qian, M.W. Chen, Ultrafine nanoporous gold by low-temperature dealloying and kinetics of nanopore formation, Appl Phys Lett. 91 (2007) 083105.

DOI: 10.1063/1.2773757

Google Scholar

[14] M.L. Free, Hydrometallurgy: Fundamentals and Applications, John Wiley & Sons Inc., New Jersey, (2013).

Google Scholar