Synthesis of Modified K0.5Na0.5NbO3 Powder by Molten-Salt Technique

Article Preview

Abstract:

In the present work, the molten-salt method was applied to synthesize 0.948K0.5Na0.5NbO3–0.052LiSbO3 powder for the first time. Characteristics of the powder were investigated. Based on X-ray diffraction technique, pure perovskite phase was observed at a calcination temperature of 700 oC which is lower than that required by the conventional solid-state reaction technique for ∼200 oC. Raman spectroscopy technique showed that the powder had an orthorhombic symmetry which consistent with the X-ray diffraction results. The powder exhibited very fine grain with narrow size distribution. Particle size of the obtained powders increased with increasing calcination temperature. Therefore, the molten-salt method is a simple and effective method to synthesize 0.948K0.5Na0.5NbO3 – 0.052LiSbO3 powder.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

160-165

Citation:

Online since:

January 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. G. Fisher, D. Rout, K. S. Moon, S. L. Kang, Structural changes in potassium sodium niobate ceramics sintered in different atmospheres, J. Alloy. Comp. 479 (2009) 467–472.

DOI: 10.1016/j.jallcom.2008.12.100

Google Scholar

[2] S. J. Liu, B. Wan, P. Wang, S. H. Song, Influence of A-site non-stoichiometry on structure and electrical properties of (Na0. 5K0. 5)NbO3-based lead-free piezoelectric ceramics, Script Mater. 63 (2010) 124–127.

DOI: 10.1016/j.scriptamat.2010.03.033

Google Scholar

[3] W. Yang, D. Jin, T. Wang, J. Cheng, Effect of oxide dopants on the structure and electrical properties of (Na0. 5K0. 5)NbO3-LiSbO3 lead-free piezoelectric ceramics, Physica B. 405 (2010) 1918–(1921).

DOI: 10.1016/j.physb.2010.01.074

Google Scholar

[4] S. Zhang, R. Xia, T. R. Shrout, G. Zang, Characterization of lead free (K0. 5Na0. 5)NbO3–LiSbO3 piezoceramic, Solid State Commun. 141 (2007) 675–679.

DOI: 10.1016/j.ssc.2007.01.007

Google Scholar

[5] Y. Zhou, M. Guo, C. Zhang, M. Zhang, Hydrothermal synthesis and piezoelectric property of Ta-doping K0. 5Na0. 5NbO3 lead-free piezoelectric ceramic, Ceram. Int. 35 (2009) 3253–3258.

DOI: 10.1016/j.ceramint.2009.05.018

Google Scholar

[6] X. Yan, W. Ren, X. Wu, P. Shi, X. Yao, Lead-free (K, Na)NbO3 ferroelectric thin films: preparation, structure and electrical properties, J. Alloy. Comp. 508 (2010) 129–132.

DOI: 10.1016/j.jallcom.2010.08.025

Google Scholar

[7] W. Chen, S. Kume, K. Watari, Molten salt synthesis of 0. 94(Na1/2Bi1/2)TiO3–0. 06BaTiO3 powder, Mater. Lett. 59 (2005) 3238-3240.

DOI: 10.1016/j.matlet.2005.04.056

Google Scholar

[8] G. Z. Zang, J. F. Wang, H. C. Chen, W. B. Su, C. M. Wang, P. Qi, B. Q. Ming, J. Du, L. M. Zheng, Perovskite (Na0. 5K0. 5)1-x(LiSb)xNb1-xO3 lead-free piezoceramics, Appl. Phys. Lett. 88 (2006) 212908.

DOI: 10.1063/1.2206554

Google Scholar

[9] J. G. Fisher, D. Rout, K. S. Moon, S. J. L. Kang, High-temperature x-ray diffraction and raman spectroscopy study of (Na0. 5K0. 5)NbO3 ceramics sintered in oxidizing and reducing atmospheres, Mater. Chem. Phys. 120 (2010) 263–271.

DOI: 10.1016/j.matchemphys.2009.11.001

Google Scholar

[10] J. T. Zeng, K. W. Kwok, H. L. W. Chan, KxNa1-xNbO3 powder synthesized by molten-salt process, Mater. Lett. 61 (2007) 409–411.

DOI: 10.1016/j.matlet.2006.04.083

Google Scholar

[11] Z. Yang, Y. Chang, B. Liu, L. Wei, Effects of composition on phase structure, microstructure and electrical properties of (K0. 5Na0. 5)NbO3–LiSbO3 ceramics, Mater Sci. Eng. A. 432 (2006) 292–298.

DOI: 10.1016/j.msea.2006.06.034

Google Scholar