Advanced Microstructural Investigations of AISI 441 Early Stage Oxidation in Wet Atmosphere

Article Preview

Abstract:

AISI 441 ferritic stainless steel is a good candidate for metallic interconnects in solid oxide fuel cells (SOFCs). The minor elements Ti and Nb are used to stabilize the ferritic matrix and also to reduce creep by a combination of solid solution strengthening and precipitation of intermetallic Laves phase particles along the grain boundaries. However their influence on the oxidation behavior is not well understood. This study focuses on the early stages oxidation (from 4 to 24 h) at 800 °C of AISI 441 under 5% H2O in O2. A relatively smooth micro-crystallized oxide scale and Ti, Nb containing nodules are observed. The internal microstructure of these objects is studied by FIB tomography which allows computing cross sectional views in any direction of interest. FIB study reveals a complex microstructure and a development strongly linked to the presence of niobium and/or titanium in the substrate.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

3-8

Citation:

Online since:

January 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. S. Seo, D. W. Yun, K. Y. Kim, Oxidation behavior of ferritic stainless steel containing Nb, Nb-Si and Nb-Ti for SOFC interconnect, Int J Hydrogen Energ. 38 (2013) 2432-2442.

DOI: 10.1016/j.ijhydene.2012.12.073

Google Scholar

[2] Z. Yang, G. -G. Xia, C. -M. Wang, Z. Nie, J. Templeton, J. W. Stevenson, P. Singh, Investigation of iron-chromium-niobium-titanium ferritic stainless steel for solid oxide fuel cell interconnect applications, J Power Sources. 183 (2008) 660-667.

DOI: 10.1016/j.jpowsour.2008.05.037

Google Scholar

[3] H. Yan, H. Bi, X. Li, Z. Xu, Microstructure and texture of Nb+Ti stabilized ferritic stainless steel, Mater Charact. 59 (2008) 1741-1746.

DOI: 10.1016/j.matchar.2008.03.018

Google Scholar

[4] J. Froitzheim, G. H. Meier, L. Niewolak, P. J. Ennis, H. Hattendorf, L. Singheiser, W. J. Quadakkers, Development of high strength ferritic steel for interconnect application in SOFCs, J Power Sources. 178 (2008) 163-173.

DOI: 10.1016/j.jpowsour.2007.12.028

Google Scholar

[5] P. D. Jablonski, C. J. Cowen, J. S. Sears, Exploration of alloy 44A chemistry for solid oxide fuel cell interconnect application, J Power Sources. 195 (2010) 813-820.

DOI: 10.1016/j.jpowsour.2009.08.023

Google Scholar

[6] B. Kuhn, M. Talik, L. Niewolak, J. Zurek, H. Hattendorf, P.J. Ennis, W. J. Quadakkers, T. Beck, L. Singheiser, Mater Sci Eng. A. 594 (2014) 372-380.

DOI: 10.1016/j.msea.2013.11.048

Google Scholar

[7] Y. Kato, M. Ito, Y. Kato, O. Furukimi, Effect of Si on precipitation behavior of Nb-Laves phase and amount of Nb in solid solution at elevated temperature in high purity 17 %Cr - 0. 5 %Nb steels, Mater Trans. 51 (2010) 1531-1535.

DOI: 10.2320/matertrans.m2010112

Google Scholar

[8] H. Ali-Löytty, P. Jussila, M. Valden, Optimization of the electrical properties of Ti-Nb stabilized ferritic stainless steel SOFC interconnect alloy upon high-temperature oxidation : the role of excess Nb on the interfacial oxidation at the oxide-metal interface, Int J Hydrogen Energ. 37 (2012).

DOI: 10.1016/j.ijhydene.2012.10.087

Google Scholar

[9] H. Ali-Löytty, P. Jussila, T. Juuti, L.P. Karjalainen, A.A. Zakharov, M. Valden, Influence of precipitation on initial high temperature oxidation of Ti-Nb stabilized ferritic stainless steel SOFC interconnect alloy, Int J Hydrogen Energ. 38 (2013).

DOI: 10.1016/j.ijhydene.2012.07.097

Google Scholar

[10] S. Gonzales, L. Combarmond, M. -T. Tran, Y. Wouters, A. Galerie, Short term oxidation of stainless steels during final annealing, Mater Sci Forum. 598 (2008) 601-610.

DOI: 10.4028/www.scientific.net/msf.595-598.601

Google Scholar

[11] W. Wongpromrat, V. Parry, F. Charlot, A. Crisci, L. Latu-Romain, W. Chandra-ambhorn, S. Chandra-ambhorn, A. Galerie, Y. Wouters, Mater High Temp. 32 (2015) 22-27.

DOI: 10.1179/0960340914z.00000000057

Google Scholar

[12] F. Toscan, L. Antoni, Y. Wouters, M. Dupeux and A. Galerie, Oxidation kinetics and scale spallation of iron-chromium alloys with different titanium contents, Mater Sci Forum. 461-464 (2004) 705-712.

DOI: 10.4028/www.scientific.net/msf.461-464.705

Google Scholar

[13] J. Schindelin, I. Arganda-Carreras, E. Frise, Fiji: an open-source platform for biological-image analysis, Nat Met. 9 (2012) 676-682.

DOI: 10.1038/nmeth.2019

Google Scholar

[14] H. Yan, H. Bi, X. Li, and Z. Xu, Precipitation and mechanical properties of Nb-modified ferritic stainless steel during isothermal aging, Mater Charact. 60 (2009) 204-209.

DOI: 10.1016/j.matchar.2008.09.001

Google Scholar