[1]
H. S. Seo, D. W. Yun, K. Y. Kim, Oxidation behavior of ferritic stainless steel containing Nb, Nb-Si and Nb-Ti for SOFC interconnect, Int J Hydrogen Energ. 38 (2013) 2432-2442.
DOI: 10.1016/j.ijhydene.2012.12.073
Google Scholar
[2]
Z. Yang, G. -G. Xia, C. -M. Wang, Z. Nie, J. Templeton, J. W. Stevenson, P. Singh, Investigation of iron-chromium-niobium-titanium ferritic stainless steel for solid oxide fuel cell interconnect applications, J Power Sources. 183 (2008) 660-667.
DOI: 10.1016/j.jpowsour.2008.05.037
Google Scholar
[3]
H. Yan, H. Bi, X. Li, Z. Xu, Microstructure and texture of Nb+Ti stabilized ferritic stainless steel, Mater Charact. 59 (2008) 1741-1746.
DOI: 10.1016/j.matchar.2008.03.018
Google Scholar
[4]
J. Froitzheim, G. H. Meier, L. Niewolak, P. J. Ennis, H. Hattendorf, L. Singheiser, W. J. Quadakkers, Development of high strength ferritic steel for interconnect application in SOFCs, J Power Sources. 178 (2008) 163-173.
DOI: 10.1016/j.jpowsour.2007.12.028
Google Scholar
[5]
P. D. Jablonski, C. J. Cowen, J. S. Sears, Exploration of alloy 44A chemistry for solid oxide fuel cell interconnect application, J Power Sources. 195 (2010) 813-820.
DOI: 10.1016/j.jpowsour.2009.08.023
Google Scholar
[6]
B. Kuhn, M. Talik, L. Niewolak, J. Zurek, H. Hattendorf, P.J. Ennis, W. J. Quadakkers, T. Beck, L. Singheiser, Mater Sci Eng. A. 594 (2014) 372-380.
DOI: 10.1016/j.msea.2013.11.048
Google Scholar
[7]
Y. Kato, M. Ito, Y. Kato, O. Furukimi, Effect of Si on precipitation behavior of Nb-Laves phase and amount of Nb in solid solution at elevated temperature in high purity 17 %Cr - 0. 5 %Nb steels, Mater Trans. 51 (2010) 1531-1535.
DOI: 10.2320/matertrans.m2010112
Google Scholar
[8]
H. Ali-Löytty, P. Jussila, M. Valden, Optimization of the electrical properties of Ti-Nb stabilized ferritic stainless steel SOFC interconnect alloy upon high-temperature oxidation : the role of excess Nb on the interfacial oxidation at the oxide-metal interface, Int J Hydrogen Energ. 37 (2012).
DOI: 10.1016/j.ijhydene.2012.10.087
Google Scholar
[9]
H. Ali-Löytty, P. Jussila, T. Juuti, L.P. Karjalainen, A.A. Zakharov, M. Valden, Influence of precipitation on initial high temperature oxidation of Ti-Nb stabilized ferritic stainless steel SOFC interconnect alloy, Int J Hydrogen Energ. 38 (2013).
DOI: 10.1016/j.ijhydene.2012.07.097
Google Scholar
[10]
S. Gonzales, L. Combarmond, M. -T. Tran, Y. Wouters, A. Galerie, Short term oxidation of stainless steels during final annealing, Mater Sci Forum. 598 (2008) 601-610.
DOI: 10.4028/www.scientific.net/msf.595-598.601
Google Scholar
[11]
W. Wongpromrat, V. Parry, F. Charlot, A. Crisci, L. Latu-Romain, W. Chandra-ambhorn, S. Chandra-ambhorn, A. Galerie, Y. Wouters, Mater High Temp. 32 (2015) 22-27.
DOI: 10.1179/0960340914z.00000000057
Google Scholar
[12]
F. Toscan, L. Antoni, Y. Wouters, M. Dupeux and A. Galerie, Oxidation kinetics and scale spallation of iron-chromium alloys with different titanium contents, Mater Sci Forum. 461-464 (2004) 705-712.
DOI: 10.4028/www.scientific.net/msf.461-464.705
Google Scholar
[13]
J. Schindelin, I. Arganda-Carreras, E. Frise, Fiji: an open-source platform for biological-image analysis, Nat Met. 9 (2012) 676-682.
DOI: 10.1038/nmeth.2019
Google Scholar
[14]
H. Yan, H. Bi, X. Li, and Z. Xu, Precipitation and mechanical properties of Nb-modified ferritic stainless steel during isothermal aging, Mater Charact. 60 (2009) 204-209.
DOI: 10.1016/j.matchar.2008.09.001
Google Scholar