[1]
R. Y Chen, W.Y.D. Yuen, Review of the high-temperature oxidation of iron and carbon steels in air or oxygen, Oxid Met. 59 (2003) 433-468.
Google Scholar
[2]
K. Ngamkham, N. Klubvihok, J. Tungtrongpairoj, S. Chandra-ambhorn, Relationship between entry temperature and properties of thermal oxide scale on low carbon steel strips, Steel Res Inter. (2012) 991-994.
Google Scholar
[3]
S. Chandra-ambhorn, K. Ngamkham, N. Jiratthanakul, Effect of process parameters on mechanical adhesion of thermal oxide scale on hot-rolled low carbon steels, Oxid Met. 80 (2013) 61-72.
DOI: 10.1007/s11085-013-9370-6
Google Scholar
[4]
R.Y. Chen, W.Y.D. Yuen, Oxide-scale structures formed on commercial hot-rolled steel strip and their formation mechanisms, Oxid Met. 56 (2001) 89-118.
Google Scholar
[5]
L. Suarez, R. Petrov, L. Kestens, M. Lamberigts, Y. Houbaert, Texture evolution of tertiary oxide scale during steel plate finishing hot rolling simulation tests, Mater Sci Forum. 550 (2007) 557-562.
DOI: 10.4028/www.scientific.net/msf.550.557
Google Scholar
[6]
P. Sarrazin, A. Galerie, J. Fouletier, Mechanisms of High Temperature Corrosion, Trans Tech Publ., Zurich, (2008).
Google Scholar
[7]
T. Nilsonthi, J. Tungtrongpairoj, S. Chandra-ambhorn, Y. Wouters, A. Galerie, Effect of silicon on formation and mechanical adhesion of thermal oxide scale grown on low carbon steels in a hot-rolling line, Steel Res Inter. (2012) 987-990.
DOI: 10.1108/acmm-07-2018-1974
Google Scholar
[8]
T. Nilsonthi, S. Chandra-ambhorn, Y. Wouters, A. Galerie, Adhesion of thermal oxide scales on hot-rolled conventional and recycled steels, Oxid Met. 79 (2013) 325-335.
DOI: 10.1007/s11085-012-9356-9
Google Scholar
[9]
S. Chandra-ambhorn, T. Nilsonthi, Y. Wouters, A. Galerie, Oxidation of simulated recycled steels with 0. 23 and 1. 03 wt. % Si in Ar-20%H2O at 900 °C, Corros Sci. 87 (2014) 101-110.
DOI: 10.1016/j.corsci.2014.06.018
Google Scholar
[10]
W. Wongpromrat, H. Thaikan, W. Chandra-ambhorn, S. Chandra-ambhorn, Chromium vaporization from AISI 441 stainless steel oxidized in humidified oxygen, Oxid Met. 79 (2013) 529-540.
DOI: 10.1007/s11085-013-9379-x
Google Scholar
[11]
P. Promdirek, G. Lothongkum, S. Chandra-ambhorn, Y. Wouters, A. Galerie, Oxidation kinetics of AISI 441 ferritic stainless steel at high temperatures in CO2 atmosphere, Oxid Met. 81 (2014) 315-329.
DOI: 10.1007/s11085-013-9432-9
Google Scholar
[12]
W. Wongpromrat, V. Parry, F. Charlot, A. Crisci, L. Latu-Romain, W. Chandra-ambhorn, S. Chandra-ambhorn, A. Galerie, Y. Wouters, Possible connection between nodule development and presence of niobium and/or titanium during short time thermal oxidation of AISI 441 stainless steel in wet atmosphere, Mater High Temp. 32 (2015).
DOI: 10.1179/0960340914z.00000000057
Google Scholar
[13]
S. Taniguchi, K. Yamamoto, D. Megumi, T. Shibata, Characteristics of scale/substrate interface area of Si-containing low-carbon steels at high temperatures, Mater Sci Eng. A. 308 (2001) 250-257.
DOI: 10.1016/s0921-5093(00)01977-8
Google Scholar
[14]
T. Ishitsuka, Y. Inoue, H. Ogawa, Effect of silicon on the steam oxidation resistance of a 9%Cr heat resistant steel, Oxid Met. 61 (2004) 125-142.
DOI: 10.1023/b:oxid.0000016280.81734.3f
Google Scholar
[15]
M. Takeda, T. Onishi, Oxidation behavior and scale properties on the Si containing steels, Mater Sci Forum. 522-523 (2006) 477-488.
DOI: 10.4028/www.scientific.net/msf.522-523.477
Google Scholar
[16]
Y. -L Yang, C. -H. Yang, S. -N. Lin, C. -H. Chen, W. -T. Tsai, Effects of Si and its content on the scale formation on hot-rolled steel strips, Mater Che Phy. 112 (2008) 566-571.
DOI: 10.1016/j.matchemphys.2008.06.021
Google Scholar
[17]
T. Nishimoto, K. Honda, Y. Kondo, K. Uemura, Effects of Si content on the oxidation behavior of Fe-Si alloys in air, Mater Sci Forum. 696 (2011) 126-131.
DOI: 10.4028/www.scientific.net/msf.696.126
Google Scholar
[18]
A. Chattopadhyay, N. Bandyopadhyay, A.K. Das, M.K. Panigrahi, Oxide scale characterization of hot rolled coils by Raman spectroscopy technique, Scrip Mater. 52 (2005) 211-215.
DOI: 10.1016/j.scriptamat.2004.09.027
Google Scholar
[19]
M. Zhang, G. Shao, Characterization and properties of oxide scales on hot-rolled strips, Mater Sci Eng. A. 452-453 (2007) 189-193.
DOI: 10.1016/j.msea.2006.10.151
Google Scholar
[20]
S. Chandra-ambhorn, T. Somphakdee, W. Chandra-ambhorn, Characterisation and pickling behavior of thermal oxide scale on low carbon steel produced from a thin slab, Mater Sci Forum. 696 (2011) 156-161.
DOI: 10.4028/www.scientific.net/msf.696.156
Google Scholar
[21]
A. Galerie, F. Toscan, E. N'Dah, K. Przybylski, Y. Wouters, M. Dupeux, Measuring adhesion of Cr2O3 and Al2O3 scales on Fe-based alloys, Mater Sci Forum. 461-464 (2004) 631-638.
DOI: 10.4028/www.scientific.net/msf.461-464.631
Google Scholar
[22]
J. Mougin, M. Dupeux, L. Antoni, A. Galerie, Adhesion of thermal oxide scales grown on ferritic stainless steels measured using the inverted blister test, Mater Sci Eng. A. 359 (2003) 44-51.
DOI: 10.1016/s0921-5093(03)00355-1
Google Scholar
[23]
F. Toscan, L. Antoni, Y. Wouters, M. Dupeux, A. Galerie, Oxidation kinetics and scale spallation of iron-chromium alloys with different titanium contents, Mater Sci Forum. 461-464 (2004) 705-712.
DOI: 10.4028/www.scientific.net/msf.461-464.705
Google Scholar
[24]
S. Chandra-ambhorn, F. Roussel-Dherbey, F. Toscan, Y. Wouters, A. Galerie, M. Dupeux, Determination of mechanical adhesion energy of thermal oxide scales on AISI 430Ti alloy using tensile test, Mater Sci Tech. 23 (2007) 497-501.
DOI: 10.1179/174328407x168964
Google Scholar
[25]
S. Chandra-ambhorn, T. Nilsonthi, Y. Madi, A. Galerie, Application of the micro-tensile testing to investigate the adhesion of thermal oxide scales grown on AISI 441 stainless steel sheet oxidised in air and water vapour, Key Eng Mater. 410-411 (2009).
DOI: 10.4028/www.scientific.net/kem.410-411.187
Google Scholar
[26]
S. Chandra-ambhorn, N. Klubvihok, Quantification of adherence of thermal oxide scale on low carbon steel using tensile test, Oxid Met. 85 (2016) 103-125.
DOI: 10.1007/s11085-015-9583-y
Google Scholar
[27]
T. Nilsonthi, Determination of mechanical adhesion energy of thermal oxide scales on steel produced from medium and thin slabs using tensile test, Key Eng Mater. 658 (2015) 106-110.
DOI: 10.4028/www.scientific.net/kem.658.106
Google Scholar
[28]
A. Chattopadhyay, T. Chanda, Role of silicon on oxide morphology and pickling behaviour of automotive steels, Scrip Mater. 58 (2008) 882-885.
DOI: 10.1016/j.scriptamat.2008.01.006
Google Scholar