Application of the Tensile Test with a CCD Camera to Assess the Adhesion of Scale to Si-Containing Hot-Rolled Steels

Article Preview

Abstract:

The tensile test has been developed to assess scale adhesion of hot-rolled steel. The tensile testing machine was equipped with the CCD camera to follow the failure of scale during straining. The hot-rolled steel with different silicon content was used to investigate the scale adhesion behavior. The result is shown the mechanical adhesion energy of scale formed on the hot-rolled steel with higher Si contain was 115 J.m-2, higher than the hot-rolled steel with lower Si contain which was 56 J.m-2. This might be due to the presence of oxide containing Si at interface which promoted adhesion, implying that longer time for descaling would be required.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

26-30

Citation:

Online since:

January 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. Y Chen, W.Y.D. Yuen, Review of the high-temperature oxidation of iron and carbon steels in air or oxygen, Oxid Met. 59 (2003) 433-468.

Google Scholar

[2] K. Ngamkham, N. Klubvihok, J. Tungtrongpairoj, S. Chandra-ambhorn, Relationship between entry temperature and properties of thermal oxide scale on low carbon steel strips, Steel Res Inter. (2012) 991-994.

Google Scholar

[3] S. Chandra-ambhorn, K. Ngamkham, N. Jiratthanakul, Effect of process parameters on mechanical adhesion of thermal oxide scale on hot-rolled low carbon steels, Oxid Met. 80 (2013) 61-72.

DOI: 10.1007/s11085-013-9370-6

Google Scholar

[4] R.Y. Chen, W.Y.D. Yuen, Oxide-scale structures formed on commercial hot-rolled steel strip and their formation mechanisms, Oxid Met. 56 (2001) 89-118.

Google Scholar

[5] L. Suarez, R. Petrov, L. Kestens, M. Lamberigts, Y. Houbaert, Texture evolution of tertiary oxide scale during steel plate finishing hot rolling simulation tests, Mater Sci Forum. 550 (2007) 557-562.

DOI: 10.4028/www.scientific.net/msf.550.557

Google Scholar

[6] P. Sarrazin, A. Galerie, J. Fouletier, Mechanisms of High Temperature Corrosion, Trans Tech Publ., Zurich, (2008).

Google Scholar

[7] T. Nilsonthi, J. Tungtrongpairoj, S. Chandra-ambhorn, Y. Wouters, A. Galerie, Effect of silicon on formation and mechanical adhesion of thermal oxide scale grown on low carbon steels in a hot-rolling line, Steel Res Inter. (2012) 987-990.

DOI: 10.1108/acmm-07-2018-1974

Google Scholar

[8] T. Nilsonthi, S. Chandra-ambhorn, Y. Wouters, A. Galerie, Adhesion of thermal oxide scales on hot-rolled conventional and recycled steels, Oxid Met. 79 (2013) 325-335.

DOI: 10.1007/s11085-012-9356-9

Google Scholar

[9] S. Chandra-ambhorn, T. Nilsonthi, Y. Wouters, A. Galerie, Oxidation of simulated recycled steels with 0. 23 and 1. 03 wt. % Si in Ar-20%H2O at 900 °C, Corros Sci. 87 (2014) 101-110.

DOI: 10.1016/j.corsci.2014.06.018

Google Scholar

[10] W. Wongpromrat, H. Thaikan, W. Chandra-ambhorn, S. Chandra-ambhorn, Chromium vaporization from AISI 441 stainless steel oxidized in humidified oxygen, Oxid Met. 79 (2013) 529-540.

DOI: 10.1007/s11085-013-9379-x

Google Scholar

[11] P. Promdirek, G. Lothongkum, S. Chandra-ambhorn, Y. Wouters, A. Galerie, Oxidation kinetics of AISI 441 ferritic stainless steel at high temperatures in CO2 atmosphere, Oxid Met. 81 (2014) 315-329.

DOI: 10.1007/s11085-013-9432-9

Google Scholar

[12] W. Wongpromrat, V. Parry, F. Charlot, A. Crisci, L. Latu-Romain, W. Chandra-ambhorn, S. Chandra-ambhorn, A. Galerie, Y. Wouters, Possible connection between nodule development and presence of niobium and/or titanium during short time thermal oxidation of AISI 441 stainless steel in wet atmosphere, Mater High Temp. 32 (2015).

DOI: 10.1179/0960340914z.00000000057

Google Scholar

[13] S. Taniguchi, K. Yamamoto, D. Megumi, T. Shibata, Characteristics of scale/substrate interface area of Si-containing low-carbon steels at high temperatures, Mater Sci Eng. A. 308 (2001) 250-257.

DOI: 10.1016/s0921-5093(00)01977-8

Google Scholar

[14] T. Ishitsuka, Y. Inoue, H. Ogawa, Effect of silicon on the steam oxidation resistance of a 9%Cr heat resistant steel, Oxid Met. 61 (2004) 125-142.

DOI: 10.1023/b:oxid.0000016280.81734.3f

Google Scholar

[15] M. Takeda, T. Onishi, Oxidation behavior and scale properties on the Si containing steels, Mater Sci Forum. 522-523 (2006) 477-488.

DOI: 10.4028/www.scientific.net/msf.522-523.477

Google Scholar

[16] Y. -L Yang, C. -H. Yang, S. -N. Lin, C. -H. Chen, W. -T. Tsai, Effects of Si and its content on the scale formation on hot-rolled steel strips, Mater Che Phy. 112 (2008) 566-571.

DOI: 10.1016/j.matchemphys.2008.06.021

Google Scholar

[17] T. Nishimoto, K. Honda, Y. Kondo, K. Uemura, Effects of Si content on the oxidation behavior of Fe-Si alloys in air, Mater Sci Forum. 696 (2011) 126-131.

DOI: 10.4028/www.scientific.net/msf.696.126

Google Scholar

[18] A. Chattopadhyay, N. Bandyopadhyay, A.K. Das, M.K. Panigrahi, Oxide scale characterization of hot rolled coils by Raman spectroscopy technique, Scrip Mater. 52 (2005) 211-215.

DOI: 10.1016/j.scriptamat.2004.09.027

Google Scholar

[19] M. Zhang, G. Shao, Characterization and properties of oxide scales on hot-rolled strips, Mater Sci Eng. A. 452-453 (2007) 189-193.

DOI: 10.1016/j.msea.2006.10.151

Google Scholar

[20] S. Chandra-ambhorn, T. Somphakdee, W. Chandra-ambhorn, Characterisation and pickling behavior of thermal oxide scale on low carbon steel produced from a thin slab, Mater Sci Forum. 696 (2011) 156-161.

DOI: 10.4028/www.scientific.net/msf.696.156

Google Scholar

[21] A. Galerie, F. Toscan, E. N'Dah, K. Przybylski, Y. Wouters, M. Dupeux, Measuring adhesion of Cr2O3 and Al2O3 scales on Fe-based alloys, Mater Sci Forum. 461-464 (2004) 631-638.

DOI: 10.4028/www.scientific.net/msf.461-464.631

Google Scholar

[22] J. Mougin, M. Dupeux, L. Antoni, A. Galerie, Adhesion of thermal oxide scales grown on ferritic stainless steels measured using the inverted blister test, Mater Sci Eng. A. 359 (2003) 44-51.

DOI: 10.1016/s0921-5093(03)00355-1

Google Scholar

[23] F. Toscan, L. Antoni, Y. Wouters, M. Dupeux, A. Galerie, Oxidation kinetics and scale spallation of iron-chromium alloys with different titanium contents, Mater Sci Forum. 461-464 (2004) 705-712.

DOI: 10.4028/www.scientific.net/msf.461-464.705

Google Scholar

[24] S. Chandra-ambhorn, F. Roussel-Dherbey, F. Toscan, Y. Wouters, A. Galerie, M. Dupeux, Determination of mechanical adhesion energy of thermal oxide scales on AISI 430Ti alloy using tensile test, Mater Sci Tech. 23 (2007) 497-501.

DOI: 10.1179/174328407x168964

Google Scholar

[25] S. Chandra-ambhorn, T. Nilsonthi, Y. Madi, A. Galerie, Application of the micro-tensile testing to investigate the adhesion of thermal oxide scales grown on AISI 441 stainless steel sheet oxidised in air and water vapour, Key Eng Mater. 410-411 (2009).

DOI: 10.4028/www.scientific.net/kem.410-411.187

Google Scholar

[26] S. Chandra-ambhorn, N. Klubvihok, Quantification of adherence of thermal oxide scale on low carbon steel using tensile test, Oxid Met. 85 (2016) 103-125.

DOI: 10.1007/s11085-015-9583-y

Google Scholar

[27] T. Nilsonthi, Determination of mechanical adhesion energy of thermal oxide scales on steel produced from medium and thin slabs using tensile test, Key Eng Mater. 658 (2015) 106-110.

DOI: 10.4028/www.scientific.net/kem.658.106

Google Scholar

[28] A. Chattopadhyay, T. Chanda, Role of silicon on oxide morphology and pickling behaviour of automotive steels, Scrip Mater. 58 (2008) 882-885.

DOI: 10.1016/j.scriptamat.2008.01.006

Google Scholar