Effects on Surface Integrity of Ti6Al4V in High Speed Milling

Article Preview

Abstract:

Surface topography is a significant factor that affects directly the surface integrity. There are several influencing factors. The purpose of the study is to investigate the effects of edge radius on surface integrity of Ti6Al4V. The proposed approach uses three different angles to study the relationship between the edge radius and surface roughness. The study develops theoretical model, roughness model based on cutting force and roughness empirical model. Experimental results show that machined surface integrity of TC4 is sensitive to the variations of the edge radius. The method is effective and can provide a guidance to optimize edge radius. It has realized higher accurate prediction of surface integrality in precision high speed milling with one of the models and has improved surface roughness quality of the work-piece.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

156-161

Citation:

Online since:

June 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. M. Schmidt, D. S. Azambuja, Effect of fluoride ions on Ti6Al4V alloy passivation in lactated ringer's serum, Mater. Res.: Ibero-American J. Mater. São Carlos, SP. 6(2) (2003) 227-231.

DOI: 10.1590/s1516-14392003000200018

Google Scholar

[2] L. Risegari, M. Barucci, L. Lolli, G. Ventura, Low temperature thermal conductivity of Ti6Al4V alloy, J. Low Temp. Phys. 151(2) (2008) 645-649.

DOI: 10.1007/s10909-008-9726-5

Google Scholar

[3] C. Bathias, K. Elalami, T. Y. Wu, Influence of mean stress on Ti6Al4V fatigue crack growth at very high frequency, Eng. Fract. Mech. 56(2) (1997) 255-264.

DOI: 10.1016/0013-7944(95)00256-1

Google Scholar

[4] C. Hu, D. Zhang, J. Ren, L. Yang, An overview on cutting force modeling, Adv. Mech. 36(4) (2006) 564-569.

Google Scholar

[5] Y. H. Jeong, D. W. Cho, Estimating cutting force from rotating and stationary feed motor currents on a milling machine, Int. J. Mach Tools Man. 42(4) (2002) 1559-1566.

DOI: 10.1016/s0890-6955(02)00082-2

Google Scholar

[6] S. K. Sikdar, M. Y. Chen, Relationship between tool flank wear area and component forces in single point turning, J. Mater. Process. Technol. 128(2) (2002) 210-215.

DOI: 10.1016/s0924-0136(02)00453-3

Google Scholar

[7] M. Weber, H. Autenrieth, J. Kotschenreuther, P. Gumbsch, V. Schulze, Influence of friction and process parameters on the specific cutting force and surface characteristics in micro cutting, Mach. Sci. Technol. 12(4) (2008) 474-497.

DOI: 10.1080/10910340802518728

Google Scholar

[8] R. M. Arunachalam, M. A. Mannan, A. C. Spowage, Surface integrity when machining hardened Inconel 718 with coated carbide cutting tools, Int. J. Mach. Tools Manuf. 44(14) (2004) 1481-1491.

DOI: 10.1016/j.ijmachtools.2004.05.005

Google Scholar

[9] P. Dahlman, F. Gunnberg, M. Jacobson, The influence of rake angle, cutting feed and cutting depth on residual stresses in hard turning, J. Mater. Process. Technol. 147(2) (2004) 181-184.

DOI: 10.1016/j.jmatprotec.2003.12.014

Google Scholar

[10] C. H. Che-Haron, Tool life and surface integrity in turning titanium alloy, J. Mater. Process. Technol. 118(1-3) (2001) 231-237.

DOI: 10.1016/s0924-0136(01)00926-8

Google Scholar

[11] D. K. Aspinwall, R. C. Dewes, E. G. Ng, C. Sage, S. L. Soo, The influence of cutter orientation and workpiece angle on machinability when high-speed milling Inconed 718 under finishing conditions, Int. J. Mach. Tools Manuf. 47(12-13) (2007).

DOI: 10.1016/j.ijmachtools.2007.04.007

Google Scholar

[12] P. Albrecht, New developments in the theory of the metal-cutting process, Part 1: The ploughing process in metal cutting, J. Eng. Ind. ASME. 82(4) (1960) 300-400.

DOI: 10.1115/1.3664244

Google Scholar

[13] X. B. Liu, M. Soshi, A. Sahasrabudhe, K. Yamazaki, M. Mori, A geometrical simulation system of ball end finish milling process and its application for the prediction of surface micro features, J. Manuf. Sci. Eng. 128(1) (2006) 74-85.

DOI: 10.1115/1.2039098

Google Scholar

[14] Y. B. Guo, W. Li, I. S. Jawahir, Surface integrity characterization and prediction in machining of hardened and difficult-to machine alloys: a state-of-art research review and analysis, Mach. Sci. Technol. 13(4) (2009) 437-470.

DOI: 10.1080/10910340903454922

Google Scholar

[15] D. W. Smithey, S. G. Kapoor, R. E. DeVor, A worn tool force model for three-dimensional cutting operations, Int. J. Mach. Tools Manuf. 40(4) (2000) 1929-(1950).

DOI: 10.1016/s0890-6955(00)00017-1

Google Scholar