Morphology and Wettability of Nanoporous Aluminium Oxide Film Prepared by Anodization

Article Preview

Abstract:

Anodic aluminium oxide (AAO) is a well-known material for nanofabrication. To obtain highly ordered nanoporous array, there is anodization process. AAO were fabricated by anodization method utilizing high purity aluminium foil as the substrate. The substrate was degreased with ultrasonic cleaner for 15 minutes. Then the substrate was anodized in an electrolyte of 0.3 M oxalic acid with various potentials: 10, 20, 30, and 40 V and various durations: 10, 30, 60, 120, and 180 minutes at room temperature. Field emission scanning electron microscope (FE-SEM) was used to investigate surface morphology of nanoporous aluminium oxide film. The wettability of nanoporous aluminium oxide surface was estimated by measuring water contact angle (WCA) of water droplets on the nanoporous aluminium oxide surface. The FE-SEM images showed that the pore size was in the range of 12 - 81 nm. This result can indicated that nanopore size of AAO film increased with the increasing of anodization potentials and anodization time. The water contact angle of AAO samples were approximately 90.55 - 44.33 degrees. The result of measurement proved that super hydrophilic surface obtained with the increasing of nanopore size and high porosity of AAO.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

174-178

Citation:

Online since:

June 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. Morales, J. M. Alameda, J. V. Anguita, J. I. Mart, J. I. Martin, M. Velez, F. Briones, J. L. Vicent, Fabrication and magnetic properties of arrays of amorphous and polycrystalline ferromagnetic nanowires obtained by electron beam lithography, J. Magn. Magn. Mater. 249 (2002).

DOI: 10.1016/s0304-8853(02)00524-3

Google Scholar

[2] ‏ W. Wang, H. Ke, J. C. Rao, M. Feng, Y. Zhou, Sol–gel synthesis of SrBi2Ta2O9 nanowires, J. Alloys Compd. 504 (2010) 367–370.

DOI: 10.1016/j.jallcom.2010.05.118

Google Scholar

[3] M. Zhu, X. Chen, Z. Wang, Y. Chen, D. Ma, H. Peng, J. Zhang, Structural and optical characteristics of silicon nanowires fabricated by wet chemical etching, Chem. Phys. Lett. 511 (2011) 106–109.

DOI: 10.1016/j.cplett.2011.06.013

Google Scholar

[4] G. Zhou, Z. Zhang, D. Yu, Growth morphology and micro-structural aspects of Si nanowires synthesized by laser ablation, J. Cryst. Growth 197 (1999)129–135.

DOI: 10.1016/s0022-0248(98)00929-4

Google Scholar

[5] G. D. Sulka, L. Zaraska, W. J. Stpniowski, Encyclopedia of Nanoscience and Nanotechnology 2nd Edition, in: H. S. Nalwa (ed. ), American Scientific Publishers (2004).

Google Scholar

[6] J. P. O'Sullivan, G. C. Wood, The morphology and mechanism of formation of porous anodic films on aluminium, Proc. R. Soc. A: Math. Phys. Eng. Sci. 317 (1970) 511–543.

Google Scholar

[7] G. D. Sulka, W. J. Stepniowski, Structural features of self-organized nanopore arrays formed by anodization of aluminium in oxalic acid at relatively high temperatures, Electrochim. Acta 54 (2009) 3683-3691.

DOI: 10.1016/j.electacta.2009.01.046

Google Scholar

[8] W. J. Stępniowski, Z. Bojar, Synthesis of anodic aluminium oxide (AAO) at relatively high temperatures. Study of the influence of anodization conditions on the alumina structural features, Surf. Coat. Tech. 206 (2011) 265–272.

DOI: 10.1016/j.surfcoat.2011.07.020

Google Scholar

[9] W. J. Stępniowski, D. Zasada, Z. Bojar, first step of anodization influences the final nanopore arrangement in anodized alumina, Surf. Coat. Tech. 206 (2011) 1416–1422.

DOI: 10.1016/j.surfcoat.2011.09.004

Google Scholar

[10] H. Segawa, H. Okano, K. Wada, S. Inoue, Fabrication of alumina films with laminated structures by ac anodization, Sci. Tech. Adv. Mater. 15 (2014) 014209 1-10.

DOI: 10.1088/1468-6996/15/1/014209

Google Scholar

[11] C. Dorrer, J. Ruhe, Some thoughts on superhydrophobic wetting, Soft Matter. 5 (2009) 51–56.

Google Scholar

[12] E. Lalik, R. Kosydar, R. Tokarz-Sobieraj, M. Witko, T. Szumełda, M. Kołodziej, W. Rojek, T. Machej, E. Bielańska, A. Drelinkiewicz, Humidity induced deactivation of Al2O3 and SiO2 supported Pd, Pt, Pd-Pt catalysts in H2 + O2 recombination reaction: The catalytic, microcalorimetric and DFT studies, Appl. Catal. A: General 501 (2015).

DOI: 10.1016/j.apcata.2015.04.029

Google Scholar

[13] C. R. Zamarreno, J. Bravo, J. Goicoechea, I. R. Matias, F. J. Arregui, Response time enhancement of pH sensing films by means of hydrophilic nanostructured coatings, Sens. Actuat. B 128 (2007) 138–144.

DOI: 10.1016/j.snb.2007.05.046

Google Scholar

[14] C. H. Voon, M. N. Derman, U. Hashim, K. R. Ahmad, K. L. Foo, Effect of Temperature of Oxalic Acid on the Fabrication of Porous Anodic Alumina from Al-Mn Alloys, J. Nanomater. 2013 (2013) 1-8.

DOI: 10.1155/2013/167047

Google Scholar

[15] F. Blaffart, Q. Van Overmeere, T. Pardoen, J. Proost, In situ monitoring of electrostriction in anodic and thermal silicon dioxide thin films, Journal of Solid State Electrochemistry 17 (2013) 1945-(1954).

DOI: 10.1007/s10008-013-2036-0

Google Scholar

[16] A. Nazemi, A. Najafian, S. A. S. Sadjadi, Aluminium oxide nanowires synthesis from high purity aluminium films via two-step anodization, Superlatt. Microstruct. 81 (2015) 1–6.

DOI: 10.1016/j.spmi.2015.01.013

Google Scholar

[17] J. Liu, S. Liu, H. Zhoua, C. Xie, Z. Huang, C. Fu, Y. Kuang, Preparation of self-ordered nanoporous anodic aluminium oxide membranes by combination of hard anodization and mild anodization, Thin Solid Films 552 (2013) 75–81.

DOI: 10.1016/j.tsf.2013.12.023

Google Scholar