Mechanical Properties of Functionally Graded Porous Aluminum Consisting of Pure Aluminum and Al-Mg-Si Aluminum Alloy

Article Preview

Abstract:

Porous aluminum can potentially satisfy both the lightweight and high-energy-absorption properties required for automotive components. In this study, functionally graded porous aluminum consisting of pure aluminum and Al-Mg-Si A6061 aluminum alloy was fabricated by a sintering and dissolution process. It was found that functionally graded porous aluminum with the same pore structures but different types of aluminum alloy can be fabricated. By performing compression tests on the fabricated functionally graded porous aluminum, it was found that its stress-strain curve initially exhibited a relatively low plateau stress similar to that of uniform porous pure aluminum. Thereafter, the stress-strain curves exhibited a relatively high plateau stress similar to that of the uniform porous A6061 aluminum alloy. Namely, it was found that the compression properties of porous aluminum can be adjusted and optimized by selecting the appropriate type of aluminum alloy.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1-6

Citation:

Online since:

June 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Banhart, Manufacture, characterisation and application of cellular metals and metal foams, Prog. Mater. Sci., 46 (2001) 559-632.

DOI: 10.1016/s0079-6425(00)00002-5

Google Scholar

[2] J. Banhart, Aluminium foams for lighter vehicles, Int. J. Veh. Des., 37 (2005) 114-125.

Google Scholar

[3] F. García-Moreno, Commercial Applications of Metal Foams: Their Properties and Production, Materials, 9 (2016) 85.

Google Scholar

[4] A. Pollien, Y. Conde, L. Pambaguian, A. Mortensen, Graded open-cell aluminium foam core sandwich beams, Mater. Sci. Eng. A, 404 (2005) 9-18.

DOI: 10.1016/j.msea.2005.05.096

Google Scholar

[5] A.H. Brothers, D.C. Dunand, Density-graded cellular aluminum, Adv. Eng. Mater., 8 (2006) 805-809.

DOI: 10.1002/adem.200600074

Google Scholar

[6] A. Hassani, A. Habibolahzadeh, H. Bafti, Production of graded aluminum foams via powder space holder technique, Mater. Des., 40 (2012) 510-515.

DOI: 10.1016/j.matdes.2012.04.024

Google Scholar

[7] Y. Hangai, T. Morita, S. Koyama, O. Kuwazuru, N. Yoshikawa, Functionally Graded Aluminum Foam Fabricated by Friction Powder Sintering Process with Traversing Tool, J. Mater. Eng. Perform., 25 (2016) 3691-3696.

DOI: 10.1007/s11665-016-2218-x

Google Scholar

[8] R. Suzuki, K. Kitazono, Effect of Graded Pore Distribution on Thermal Insulation of Metal Foam, J. Japan Inst. Metals, 72 (2008) 758-762.

DOI: 10.2320/jinstmet.72.758

Google Scholar

[9] Y. Hangai, K. Takahashi, T. Utsunomiya, S. Kitahara, O. Kuwazuru, N. Yoshikawa, Fabrication of functionally graded aluminum foam using aluminum alloy die castings by friction stir processing, Mater. Sci. Eng. A, 534 (2012) 716-719.

DOI: 10.1016/j.msea.2011.11.100

Google Scholar

[10] Y. Hangai, K. Takahashi, R. Yamaguchi, T. Utsunomiya, S. Kitahara, O. Kuwazuru, N. Yoshikawa, Nondestructive observation of pore structure deformation behavior of functionally graded aluminum foam by X-ray computed tomography, Mater. Sci. Eng. A, 556 (2012).

DOI: 10.1016/j.msea.2012.07.047

Google Scholar

[11] S. -Y. He, Y. Zhang, G. Dai, J. -Q. Jiang, Preparation of density-graded aluminum foam, Mater. Sci. Eng. A, 618 (2014) 496-499.

DOI: 10.1016/j.msea.2014.08.087

Google Scholar

[12] Y. Hangai, K. Saito, T. Utsunomiya, O. Kuwazuru, N. Yoshikawa, Fabrication and compression properties of functionally graded foam with uniform pore structures consisting of dissimilar A1050 and A6061 aluminum alloys, Mater. Sci. Eng. A, 613 (2014).

DOI: 10.1016/j.msea.2014.06.039

Google Scholar

[13] Y. Hangai, N. Kubota, T. Utsunomiya, H. Kawashima, O. Kuwazuru, N. Yoshikawa, Drop weight impact behavior of functionally graded aluminum foam consisting of A1050 and A6061 aluminum alloys, Mater. Sci. Eng. A, 639 (2015) 597-603.

DOI: 10.1016/j.msea.2015.05.007

Google Scholar

[14] Y.Y. Zhao, D.X. Sun, A novel sintering-dissolution process for manufacturing Al foams, Scr. Mater., 44 (2001) 105-110.

DOI: 10.1016/s1359-6462(00)00548-0

Google Scholar

[15] M. Hakamada, Y. Yamada, T. Nomura, Y.Q. Chen, H. Kusuda, M. Mabuchi, Fabrication of porous aluminum by spacer method consisting of spark plasma sintering and sodium chloride dissolution, Mater. Trans., 46 (2005) 2624-2628.

DOI: 10.2320/matertrans.46.2624

Google Scholar

[16] M. Hakamada, T. Kuromura, Y. Chino, Y. Yamada, Y. Chen, H. Kusuda, M. Mabuchi, Monotonic and cyclic compressive properties of porous aluminum fabricated by spacer method, Mater. Sci. Eng. A, 459 (2007) 286-293.

DOI: 10.1016/j.msea.2007.03.027

Google Scholar

[17] Y. Hangai, H. Yoshida, R. Yamaguchi, O. Kuwazuru, N. Yoshikawa, Relationship between amount of residual NaCl and compressive properties of porous Al/NaCl composites fabricated by sintering and dissolution process, Mater. Trans., 54 (2013).

DOI: 10.2320/matertrans.m2013023

Google Scholar

[18] Y. Hangai, K. Zushida, O. Kuwazuru, N. Yoshikawa, Functionally Graded Al Foam Fabricated by Sintering and Dissolution Process with Remaining Spacers, Mater. Trans., 57 (2016) 748-750.

DOI: 10.2320/matertrans.m2015404

Google Scholar

[19] JIS-H-7902, Method for compressive test of porous metals, Japanese Standards Association, (2008).

Google Scholar