An Experimental Analysis of the Mechanical Behaviour of Anchored CFRP-to-Masonry Reinforcements Loaded by Out-of-Plane Actions

Article Preview

Abstract:

Carbon Fibers Reinforced Composite (CFRP) materials are widely used for structural rehabilitation and retrofitting of both masonry and concrete structures. Recent studies published in the literature are devoted to the analysis of novel methods to increase CFRP-to-substrate bond capacity. Among these, spike anchors demonstrated to be able to effectively increase both strength and ductility of CFRP reinforcement sheets. Since most of the literature in this field refers to CFRP-to-masonry reinforcements loaded by in plane actions, the experimental research described in this paper is devoted to the analysis of the effectiveness of spike anchors in CFRP reinforcements bonded to masonry structural elements loaded by out-of-plane actions.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

204-211

Citation:

Online since:

July 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Corradi M, Borri A, Osofero AI, Castori G. Strengthening of historic masonry structures with composite materials. Handb. Res. Seism. Assess. Rehabil. Hist. Struct., 2015, p.257–92. doi: 10. 4018/978-1-4666-8286-3. ch008.

DOI: 10.4018/978-1-4666-8286-3.ch008

Google Scholar

[2] Borri A, Castori G, Corradi M. Intrados strengthening of brick masonry arches with composite materials. Compos Part B-Engineering 2011; 42: 1164–72. doi: 10. 1016/j. compositesb. 2011. 03. 005.

DOI: 10.1016/j.compositesb.2011.03.005

Google Scholar

[3] D'Ambrisi A, Feo L, Focacci F. Masonry arches strengthened with composite unbonded tendons. Compos Struct 2013; 98: 323–9. doi: http: /dx. doi. org/10. 1016/j. compstruct. 2012. 10. 040.

DOI: 10.1016/j.compstruct.2012.10.040

Google Scholar

[4] Fagone M, Rotunno T, Bati SB. The Groin Vaults of St. John Hospital in Jerusalem: An Experimental Analysis on a Scale Model. Int J Archit Herit 2016; 10: 903–918. doi: 10. 1080/15583058. 2016. 1158331.

DOI: 10.1080/15583058.2016.1158331

Google Scholar

[5] Briccoli Bati S, Fagone M, Rotunno T. Lower Bound Limit Analysis of Masonry Arches with CFRP Reinforcements: A Numerical Method. J Compos Constr 2013; 17: 366. doi: 10. 1061/(asce)cc. 1943-5614. 0000350.

DOI: 10.1061/(asce)cc.1943-5614.0000350

Google Scholar

[6] Benedetti A, Briccoli Bati S. Experimental pushover analysis of a model masonry bridge. Struct. Anal. Hist. Constr. Anamn. diagnosis, Ther. Control. - Proc. 10th Int. Conf. Struct. Anal. Hist. Constr. SAHC 2016, Leuven, Belgium: 2016, p.1458–64.

DOI: 10.1201/9781315616995-198

Google Scholar

[7] Yao J, Teng JG, Chen JF. Experimental study on FRP-to-concrete bonded joints. Compos Part B-Engineering 2005; 36: 99–113. doi: 10. 1016/j. compositesb. 2004. 06. 00l.

DOI: 10.1016/j.compositesb.2004.06.001

Google Scholar

[8] D'ambrisi A, Feo L, Focacci F. Experimental analysis on bond between PBO-FRCM strengthening materials and concrete. Compos Part B-Engineering 2013; 44: 524–32.

DOI: 10.1016/j.compositesb.2012.03.011

Google Scholar

[9] D'ambrisi A, Feo L, Focacci F. Bond-slip relations for PBO-FRCM materials externally bonded to concrete. Compos Part B-Engineering 2012; 43: 2938–49.

DOI: 10.1016/j.compositesb.2012.06.002

Google Scholar

[10] Valluzzi MR, Oliveira D V, Caratelli A, Castori G, Corradi M, de Felice G, et al. Round Robin Test for composite-to-brick shear bond characterization. Mater Struct 2012; 45: 1761–91. doi: 10. 1617/s11527-012-9883-5.

DOI: 10.1617/s11527-012-9883-5

Google Scholar

[11] Carloni C, Focacci F. FRP-masonry interfacial debonding: An energy balance approach to determine the influence of the mortar joints. Eur J Mech - A/Solids 2016; 55: 122–33. doi: http: /dx. doi. org/10. 1016/j. euromechsol. 2015. 08. 003.

DOI: 10.1016/j.euromechsol.2015.08.003

Google Scholar

[12] Malena M, Focacci F, Carloni C, de Felice G. The effect of the shape of the cohesive material law on the stress transfer at the FRP-masonry interface. Compos Part B Eng 2017; 110: 368–80. doi: 10. 1016/j. compositesb. 2016. 11. 012.

DOI: 10.1016/j.compositesb.2016.11.012

Google Scholar

[13] Ou Y, Zhu D, Zhang H, Yao Y, Mobasher B, Huang L. Mechanical properties and failure characteristics of CFRP under intermediate strain rates and varying temperatures. Compos Part B Eng 2016; 95: 123–36. doi: 10. 1016/j. compositesb. 2016. 03. 085.

DOI: 10.1016/j.compositesb.2016.03.085

Google Scholar

[14] Freddi F, Sacco E. An interphase model for the analysis of the masonry-FRP bond. Compos Struct 2016; 138: 322–34. doi: 10. 1016/j. compstruct. 2015. 11. 041.

DOI: 10.1016/j.compstruct.2015.11.041

Google Scholar

[15] National Research Council. CNR-DT 200/R1: Istruzioni per la Progettazione, l'Esecuzione ed il Controllo di Interventi di Consolidamento Statico mediante l'utilizzo di Compositi Fibrorinforzati (2013).

Google Scholar

[16] Ceroni F, de Felice G, Grande E, Malena M, Mazzotti C, Murgo F, et al. Analytical and numerical modeling of composite-to-brick bond. Mater Struct 2014; 47: 1987–2003. doi: 10. 1617/s11527-014-0382-8.

DOI: 10.1617/s11527-014-0382-8

Google Scholar

[17] Ghiassi B, Oliveira D V, Lourenco PB, Marcari G. Numerical study of the role of mortar joints in the bond behavior of FRP-strengthened masonry. Compos Part B-Engineering 2013; 46: 21–30. doi: 10. 1016/j. compositesb. 2012. 10. 017.

DOI: 10.1016/j.compositesb.2012.10.017

Google Scholar

[18] Kalfat R, Al-Mahaidi R, Smith ST. Anchorage Devices Used to Improve the Performance of Reinforced Concrete Beams Retrofitted with FRP Composites: State-of-the-Art Review. J Compos Constr 2013; 17: 14–33. doi: Doi 10. 1061/(Asce)Cc. 1943-5614. 0000276.

DOI: 10.1061/(asce)cc.1943-5614.0000276

Google Scholar

[19] Grelle S V, Sneed LH. Review of Anchorage Systems for Externally Bonded FRP Laminates. Int J Concr Struct Mater 2013; 7: 17–33. doi: 10. 1007/s40069-013-0029-0.

DOI: 10.1007/s40069-013-0029-0

Google Scholar

[20] Fagone M, Ranocchiai G, Caggegi C, Briccoli Bati S, Cuomo M. The efficiency of mechanical anchors in CFRP strengthening of masonry: An experimental analysis. Compos Part B Eng 2014; 64: 1–15. doi: 10. 1016/j. compositesb. 2014. 03. 018.

DOI: 10.1016/j.compositesb.2014.03.018

Google Scholar

[21] Caggegi C, Pensee V, Fagone M, Cuomo M, Chevalier L. Experimental global analysis of the efficiency of carbon fiber anchors applied over CFRP strengthened bricks. Constr Build Mater 2014; 53: 203–12. doi: 10. 1016/j. conbuildmat. 2013. 11. 086.

DOI: 10.1016/j.conbuildmat.2013.11.086

Google Scholar

[22] Fagone M, Ranocchiai G, Briccoli Bati S. An experimental analysis about the effects of mortar joints on the efficiency of anchored CFRP-to-masonry reinforcements. Compos Part B-Engineering 2015; 76: 133–48. doi: 10. 1016/j. compositesb. 2015. 01. 050.

DOI: 10.1016/j.compositesb.2015.01.050

Google Scholar

[23] Contrafatto L, Cosenza R. Behaviour of post-installed adhesive anchors in natural stone. Constr Build Mater 2014; 68: 355–69. doi: http: /dx. doi. org/10. 1016/j. conbuildmat. 2014. 05. 099.

DOI: 10.1016/j.conbuildmat.2014.05.099

Google Scholar

[24] Contrafatto L, Cosenza R. Prediction of the pull-out strength of chemical anchors in natural stone. Frat Ed Integrita Strutt 2014; 8. doi: 10. 3221/IGF-ESIS. 29. 17.

DOI: 10.3221/igf-esis.29.17

Google Scholar

[25] Briccoli Bati S, Fagone M, Ranocchiai G. The effects of mortar joints on the efficiency of anchored CFRP sheets reinforcements of brick-masonry. Key Eng Mater 2015; 624: 575–83. doi: 10. 4028/www. scientific. net/KEM. 624. 575.

DOI: 10.4028/www.scientific.net/kem.624.575

Google Scholar

[26] Institute AC. ACI 440. 2R-08: Guide for design and construction of externally bonded FRP systems for strengthening concrete structures 2008; ACI 440. 2R.

DOI: 10.14359/51700867

Google Scholar

[27] Fagone M, Ranocchiai G. On the mechanical behaviour of anchored CFRP-to-masonry reinforcements. In: Modena C, da Porto F, Valluzzi MR, editors. 16th Int. Brick Block Mason. Conf., Padova, Italy: Taylor & Francis Group; (2016).

DOI: 10.1201/b21889-46

Google Scholar

[28] Briccoli Bati S, Ranocchiai G. A critical review of experimental techniques for brick materials. Proc. 10th Int. Brick Block Mason. Conf. Vols 1-3, Calgary: 1994, p.1247–55.

Google Scholar

[29] UNI EN 1015-11. Methods of test for mortar for masonry Part 11: Determination of flexural and compressive strength of hardened mortar 2007; UNI EN 101.

DOI: 10.3403/01905442

Google Scholar

[30] Zhang HW, Smith ST, Kim SJ. Optimisation of carbon and glass FRP anchor design. Constr Build Mater 2012; 32: 1–12. doi: Doi 10. 1016/J. Conbuildmat. 2010. 11. 100.

Google Scholar