[1]
Corradi M, Borri A, Osofero AI, Castori G. Strengthening of historic masonry structures with composite materials. Handb. Res. Seism. Assess. Rehabil. Hist. Struct., 2015, p.257–92. doi: 10. 4018/978-1-4666-8286-3. ch008.
DOI: 10.4018/978-1-4666-8286-3.ch008
Google Scholar
[2]
Borri A, Castori G, Corradi M. Intrados strengthening of brick masonry arches with composite materials. Compos Part B-Engineering 2011; 42: 1164–72. doi: 10. 1016/j. compositesb. 2011. 03. 005.
DOI: 10.1016/j.compositesb.2011.03.005
Google Scholar
[3]
D'Ambrisi A, Feo L, Focacci F. Masonry arches strengthened with composite unbonded tendons. Compos Struct 2013; 98: 323–9. doi: http: /dx. doi. org/10. 1016/j. compstruct. 2012. 10. 040.
DOI: 10.1016/j.compstruct.2012.10.040
Google Scholar
[4]
Fagone M, Rotunno T, Bati SB. The Groin Vaults of St. John Hospital in Jerusalem: An Experimental Analysis on a Scale Model. Int J Archit Herit 2016; 10: 903–918. doi: 10. 1080/15583058. 2016. 1158331.
DOI: 10.1080/15583058.2016.1158331
Google Scholar
[5]
Briccoli Bati S, Fagone M, Rotunno T. Lower Bound Limit Analysis of Masonry Arches with CFRP Reinforcements: A Numerical Method. J Compos Constr 2013; 17: 366. doi: 10. 1061/(asce)cc. 1943-5614. 0000350.
DOI: 10.1061/(asce)cc.1943-5614.0000350
Google Scholar
[6]
Benedetti A, Briccoli Bati S. Experimental pushover analysis of a model masonry bridge. Struct. Anal. Hist. Constr. Anamn. diagnosis, Ther. Control. - Proc. 10th Int. Conf. Struct. Anal. Hist. Constr. SAHC 2016, Leuven, Belgium: 2016, p.1458–64.
DOI: 10.1201/9781315616995-198
Google Scholar
[7]
Yao J, Teng JG, Chen JF. Experimental study on FRP-to-concrete bonded joints. Compos Part B-Engineering 2005; 36: 99–113. doi: 10. 1016/j. compositesb. 2004. 06. 00l.
DOI: 10.1016/j.compositesb.2004.06.001
Google Scholar
[8]
D'ambrisi A, Feo L, Focacci F. Experimental analysis on bond between PBO-FRCM strengthening materials and concrete. Compos Part B-Engineering 2013; 44: 524–32.
DOI: 10.1016/j.compositesb.2012.03.011
Google Scholar
[9]
D'ambrisi A, Feo L, Focacci F. Bond-slip relations for PBO-FRCM materials externally bonded to concrete. Compos Part B-Engineering 2012; 43: 2938–49.
DOI: 10.1016/j.compositesb.2012.06.002
Google Scholar
[10]
Valluzzi MR, Oliveira D V, Caratelli A, Castori G, Corradi M, de Felice G, et al. Round Robin Test for composite-to-brick shear bond characterization. Mater Struct 2012; 45: 1761–91. doi: 10. 1617/s11527-012-9883-5.
DOI: 10.1617/s11527-012-9883-5
Google Scholar
[11]
Carloni C, Focacci F. FRP-masonry interfacial debonding: An energy balance approach to determine the influence of the mortar joints. Eur J Mech - A/Solids 2016; 55: 122–33. doi: http: /dx. doi. org/10. 1016/j. euromechsol. 2015. 08. 003.
DOI: 10.1016/j.euromechsol.2015.08.003
Google Scholar
[12]
Malena M, Focacci F, Carloni C, de Felice G. The effect of the shape of the cohesive material law on the stress transfer at the FRP-masonry interface. Compos Part B Eng 2017; 110: 368–80. doi: 10. 1016/j. compositesb. 2016. 11. 012.
DOI: 10.1016/j.compositesb.2016.11.012
Google Scholar
[13]
Ou Y, Zhu D, Zhang H, Yao Y, Mobasher B, Huang L. Mechanical properties and failure characteristics of CFRP under intermediate strain rates and varying temperatures. Compos Part B Eng 2016; 95: 123–36. doi: 10. 1016/j. compositesb. 2016. 03. 085.
DOI: 10.1016/j.compositesb.2016.03.085
Google Scholar
[14]
Freddi F, Sacco E. An interphase model for the analysis of the masonry-FRP bond. Compos Struct 2016; 138: 322–34. doi: 10. 1016/j. compstruct. 2015. 11. 041.
DOI: 10.1016/j.compstruct.2015.11.041
Google Scholar
[15]
National Research Council. CNR-DT 200/R1: Istruzioni per la Progettazione, l'Esecuzione ed il Controllo di Interventi di Consolidamento Statico mediante l'utilizzo di Compositi Fibrorinforzati (2013).
Google Scholar
[16]
Ceroni F, de Felice G, Grande E, Malena M, Mazzotti C, Murgo F, et al. Analytical and numerical modeling of composite-to-brick bond. Mater Struct 2014; 47: 1987–2003. doi: 10. 1617/s11527-014-0382-8.
DOI: 10.1617/s11527-014-0382-8
Google Scholar
[17]
Ghiassi B, Oliveira D V, Lourenco PB, Marcari G. Numerical study of the role of mortar joints in the bond behavior of FRP-strengthened masonry. Compos Part B-Engineering 2013; 46: 21–30. doi: 10. 1016/j. compositesb. 2012. 10. 017.
DOI: 10.1016/j.compositesb.2012.10.017
Google Scholar
[18]
Kalfat R, Al-Mahaidi R, Smith ST. Anchorage Devices Used to Improve the Performance of Reinforced Concrete Beams Retrofitted with FRP Composites: State-of-the-Art Review. J Compos Constr 2013; 17: 14–33. doi: Doi 10. 1061/(Asce)Cc. 1943-5614. 0000276.
DOI: 10.1061/(asce)cc.1943-5614.0000276
Google Scholar
[19]
Grelle S V, Sneed LH. Review of Anchorage Systems for Externally Bonded FRP Laminates. Int J Concr Struct Mater 2013; 7: 17–33. doi: 10. 1007/s40069-013-0029-0.
DOI: 10.1007/s40069-013-0029-0
Google Scholar
[20]
Fagone M, Ranocchiai G, Caggegi C, Briccoli Bati S, Cuomo M. The efficiency of mechanical anchors in CFRP strengthening of masonry: An experimental analysis. Compos Part B Eng 2014; 64: 1–15. doi: 10. 1016/j. compositesb. 2014. 03. 018.
DOI: 10.1016/j.compositesb.2014.03.018
Google Scholar
[21]
Caggegi C, Pensee V, Fagone M, Cuomo M, Chevalier L. Experimental global analysis of the efficiency of carbon fiber anchors applied over CFRP strengthened bricks. Constr Build Mater 2014; 53: 203–12. doi: 10. 1016/j. conbuildmat. 2013. 11. 086.
DOI: 10.1016/j.conbuildmat.2013.11.086
Google Scholar
[22]
Fagone M, Ranocchiai G, Briccoli Bati S. An experimental analysis about the effects of mortar joints on the efficiency of anchored CFRP-to-masonry reinforcements. Compos Part B-Engineering 2015; 76: 133–48. doi: 10. 1016/j. compositesb. 2015. 01. 050.
DOI: 10.1016/j.compositesb.2015.01.050
Google Scholar
[23]
Contrafatto L, Cosenza R. Behaviour of post-installed adhesive anchors in natural stone. Constr Build Mater 2014; 68: 355–69. doi: http: /dx. doi. org/10. 1016/j. conbuildmat. 2014. 05. 099.
DOI: 10.1016/j.conbuildmat.2014.05.099
Google Scholar
[24]
Contrafatto L, Cosenza R. Prediction of the pull-out strength of chemical anchors in natural stone. Frat Ed Integrita Strutt 2014; 8. doi: 10. 3221/IGF-ESIS. 29. 17.
DOI: 10.3221/igf-esis.29.17
Google Scholar
[25]
Briccoli Bati S, Fagone M, Ranocchiai G. The effects of mortar joints on the efficiency of anchored CFRP sheets reinforcements of brick-masonry. Key Eng Mater 2015; 624: 575–83. doi: 10. 4028/www. scientific. net/KEM. 624. 575.
DOI: 10.4028/www.scientific.net/kem.624.575
Google Scholar
[26]
Institute AC. ACI 440. 2R-08: Guide for design and construction of externally bonded FRP systems for strengthening concrete structures 2008; ACI 440. 2R.
DOI: 10.14359/51700867
Google Scholar
[27]
Fagone M, Ranocchiai G. On the mechanical behaviour of anchored CFRP-to-masonry reinforcements. In: Modena C, da Porto F, Valluzzi MR, editors. 16th Int. Brick Block Mason. Conf., Padova, Italy: Taylor & Francis Group; (2016).
DOI: 10.1201/b21889-46
Google Scholar
[28]
Briccoli Bati S, Ranocchiai G. A critical review of experimental techniques for brick materials. Proc. 10th Int. Brick Block Mason. Conf. Vols 1-3, Calgary: 1994, p.1247–55.
Google Scholar
[29]
UNI EN 1015-11. Methods of test for mortar for masonry Part 11: Determination of flexural and compressive strength of hardened mortar 2007; UNI EN 101.
DOI: 10.3403/01905442
Google Scholar
[30]
Zhang HW, Smith ST, Kim SJ. Optimisation of carbon and glass FRP anchor design. Constr Build Mater 2012; 32: 1–12. doi: Doi 10. 1016/J. Conbuildmat. 2010. 11. 100.
Google Scholar