Bending Reinforcement of Full-Scale Timber Beams with Mechanically Attached GFRP Composite Plates

Article Preview

Abstract:

This paper presents the results of an experimental campaign aimed to evaluate the performance of timber beams strengthened in bending using GFRP (Glass Fiber Reinforced Polymer) plates mechanically attached with high-strength metal screws. Modest ratios of GFRP composite reinforcement can increase beam load-carrying capacity and manipulate failure mode from the brittle tensile in the unreinforced beams to a more extensible failure in the strengthened timber beams. Application of mechanical reinforcement presents a solution of reversibility, compatibility and durability for reinforced timber. The experimental campaign focused on load-deflection relationship and failure modes in order to increase the bending capacity and stiffness of the timber beam. Oak beams with dimensions 145 x 145 x 2450 mm were reinforced with un-bonded pultruded GFRP plates. Hexagon head coach screws 16 mm diameter, 130 mm length, grade 8.8, were used to mechanically attach the reinforcement along with 34 mm outer diameter fender washers, distributing the fastening load away from the screw’s position. All beams were tested until failure under the four-point bending configuration. Experimental results demonstrate the effectiveness of the reinforcement method and ability to reversibly repair the timber, representing a capability to be utilised in the new constructions or restoration of timber structures.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

212-219

Citation:

Online since:

July 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Thelandersson S, Larsen HJ. Timber engineering. John Wiley & Sons (2003).

Google Scholar

[2] M. Corradi, A. Borri, Fir and chestnut timber beams reinforced with GFRP pultruded elements, Compos. Part B-Eng. 38 (2007) 172-181.

DOI: 10.1016/j.compositesb.2006.07.003

Google Scholar

[3] G.M. Raftery, A.M. Harte, Low-grade glued laminated timber reinforced with FRP plate, Compos. Part B-Eng. 42 (2011) 724-735.

DOI: 10.1016/j.compositesb.2011.01.029

Google Scholar

[4] C. Gentile, D. Svecova, S.R. Rizkalla, Timber beams strengthened with GFRP bars: development and applications, J. Compos. Constr. 6 (2002) 11-20.

DOI: 10.1061/(asce)1090-0268(2002)6:1(11)

Google Scholar

[5] A. Borri, M. Corradi, A. Grazini, A method for flexural reinforcement of old wood beam with CFRP materials, Compos. Part B-Eng. 36 (2005) 143-153.

DOI: 10.1016/j.compositesb.2004.04.013

Google Scholar

[6] F. Micelli, V. Scialpi, A. La Tegola, Flexural reinforcement of glulam timber beams and joints with carbon fiber-reinforced polymer rods, J. Compos. Constr. 9 (2005) 337-347.

DOI: 10.1061/(asce)1090-0268(2005)9:4(337)

Google Scholar

[7] G.M. Raftery, C. Whelan, Low-grade glued laminated timber beams reinforced using improved arrangements of bonded-in GFRP rods, Constr. Build. Mater. 52 (2014) 209-220.

DOI: 10.1016/j.conbuildmat.2013.11.044

Google Scholar

[8] L. Righetti, M. Corradi, A. Borri, Bond strength of composite CFRP reinforcing bars in timber, Materials 8 (2015) 4034-4049.

DOI: 10.3390/ma8074034

Google Scholar

[9] A. D'Ambrisi, Focacci F, L. Raimondo, Experimental investigation on flexural behavior of timber beams repaired with CFRP plates, Compos. Struct. 108 (2014) 720-728.

DOI: 10.1016/j.compstruct.2013.10.005

Google Scholar

[10] P. de la Rosa García, A. Cobo Escamilla, M.N. González García, Bending reinforcement of timber beams with composite carbon fiber and basalt fiber materials, Compos. Part. B: Eng. 55 (2013) 528-536.

DOI: 10.1016/j.compositesb.2013.07.016

Google Scholar

[11] Y.J. Kim, K.A. Harries, Modeling of timber beams strengthened with various CFRP composites, Eng. Struct. (2010) 32 3225-3234.

DOI: 10.1016/j.engstruct.2010.06.011

Google Scholar

[12] S. Hay, K. Thiessen, D. Svecova, B. Bakht, Effectiveness of GFRP sheets for shear strengthening of timber, J. Compos. Constr. 10 (2006) 483-491.

DOI: 10.1061/(asce)1090-0268(2006)10:6(483)

Google Scholar

[13] J. Jasieńko, T.P. Nowak, Ł Bednarz, Baroque structural ceiling over the Leopoldinum Auditorium in Wrocław University: tests, conservation, and a strengthening concept, Int. J. Archit. Herit. 8 (2014) 269-289.

DOI: 10.1080/15583058.2012.692848

Google Scholar

[14] D.W. Radford, D. Van Goethem, R.M. Gutkowski, M.L. Peterson, Composite repair of timber structures, Constr. Build. Mater. 16 (2002) 417-425.

DOI: 10.1016/s0950-0618(02)00044-2

Google Scholar

[15] K.U. Schober, A.M. Harte, R. Kliger, R. Jockwer, Q. Xu, Chen JF. FRP reinforcement of timber structures, Constr. Build. Mater. 97 (2015) 106-118.

DOI: 10.1016/j.conbuildmat.2015.06.020

Google Scholar

[16] A. Borri, M. Corradi, E. Speranzini, Reinforcement of wood with natural fibres, Compos. Part B-Eng. 53 (2013) 1-8.

Google Scholar

[17] P. Munafò, F. Stazi, C. Tassi, F. Davì, Experimentation on historic timber trusses to identify repair techniques compliant with the original structural–constructive conception, Constr. Build. Mater. 87 (2015) 54-66.

DOI: 10.1016/j.conbuildmat.2015.03.086

Google Scholar

[18] L. Wang, A. Toppinen, H. Juslin, Use of wood in green building: a study of expert perspectives from the UK, J. Clean. Prod. 65 (2014) 350-361.

DOI: 10.1016/j.jclepro.2013.08.023

Google Scholar

[19] M. Corradi, A. Borri, G. Castori, E. Speranzini, Fully reversible reinforcement of softwood beams with unbonded composite plates, Compos. Struct. 149 (2016) 54-68.

DOI: 10.1016/j.compstruct.2016.04.014

Google Scholar

[20] EN 338: 2009. Structural timber - Strength classes.

Google Scholar

[21] EN 14399: 2005 High-strength structural bolting assemblies for preloading.

Google Scholar

[22] EN 408: 2010. Timber structures. Structural timber and glued laminated timber: determination of some physical and mechanical properties.

DOI: 10.3403/30159970

Google Scholar

[23] ASTM D143: 2009. Standard test methods for small clear specimens of timber.

Google Scholar

[24] EN 13183-1: 2002. Moisture content of a piece of sawn timber. Determination by oven dry method.

DOI: 10.3403/02558468

Google Scholar

[25] EN 13706-1: 2002. Reinforced plastics composites. Specifications for pultruded profiles.

Google Scholar

[26] ASTM D3039: 2009. Standard test method for tensile properties of fiber-resin composites.

Google Scholar