Design and Processing of Novel Ceramic Composite Structures for Use in Medical Surgery

Article Preview

Abstract:

. In order to fulfill the clinical requirements for strong, tough and stable ceramics for dental applications, we have designed and developed innovative Ceria-stabilized zirconia (Ce-TZP)-based composites. In particular, we have added two kinds of second phases to the Ce-TZP matrix: equiaxed a-Al2O3 grains, for increasing the hardness and the fracture strength, and elongated hexa-aluminates (both SrAl12O19 and CeMgAl11O19), to provide an additional toughening effect by crack deflection/bridging mechanisms. In order to carefully control the composition and the microstructure in those complex composite systems, we have used a novel surface-coating approach for the preparation of the nanostructured composite powders, which allows a perfect tailoring of the microstructural, morphological and compositional features of the composites. Once optimized the sintering cycle for each composite material, both composites reached full densification. Mechanical properties (Vickers hardness, flexural strength and fracture toughness) were evaluated, while the zirconia transformability was followed by means of an optical microscope during load-unload bending tests. The sensitivity to ageing was estimated by autoclave treatments. In spite of a remarkable different behavior – mainly in terms of stress-induced tetragonal to monoclinic zirconia transformability - both materials showed excellent mechanical properties as well as a negligible sensitivity to ageing, thus demonstrating their high potential for new reliable and safe devices for structural biomedical applications.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

195-204

Citation:

Online since:

August 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C. Piconi, A.A. Porporati, Bioinert Ceramics: Zirconia and Alumina, Handbook of Bioceramics and Biocomposites, Springer International Publishing Switzerland 2015, pp.1-25.

DOI: 10.1007/978-3-319-09230-0_4-1

Google Scholar

[2] J. Fisher, B. Stawarczyk, Compatibility of machined Ce-TZP/Al2O3 nanocomposite and a veneering ceramic. Dent. Mater. 2 (2007) 1500-1505.

DOI: 10.1016/j.dental.2007.01.005

Google Scholar

[3] M. Cattani-Lorente, S.S. Scherrer, P. Ammann, M. Jobin, A. Wiskott, Low temperature degradation of a YTZP dental ceramic. Acta Biomater. 7 (2011) 858-865.

DOI: 10.1016/j.actbio.2010.09.020

Google Scholar

[4] H. El Attaoui, M. Saâdaoui, J. Chevalier, G. Fantozzi, Static and cyclic crack propagation in Ce-TZP ceramics with different amounts of transformation toughening, J. Eur. Ceram. Soc. 27 (2007) 483-486.

DOI: 10.1016/j.jeurceramsoc.2006.04.108

Google Scholar

[5] M. Nawa, S. Nakamoto, T. Sekino, K. Niihara, Tough and strong Ce-TZP/Alumina nanocomposites doped with Titania, Ceram. Int. 24 (1998) 497-506.

DOI: 10.1016/s0272-8842(97)00048-5

Google Scholar

[6] R.A. Cutler, J.M. Lindemann, J.H. Ulvensøen, H.I. Lange, Damage-resistant SrO-doped Ce-TZP/Al2O3 composites, Mater. Design 15 (1994) 123-133.

DOI: 10.1016/0261-3069(94)90111-2

Google Scholar

[7] R.A. Cutler, R.J. Mayhew, K.M. Prettyman, A.V. Virkar, High-Toughness Ce-TZP/Al2O3 Ceramics with improved hardness and strength, J. Am. Ceram. Soc. 74 (1991) 179-186.

DOI: 10.1111/j.1151-2916.1991.tb07315.x

Google Scholar

[8] P. Palmero, V. Naglieri, J. Chevalier, G. Fantozzi, L. Montanaro, Alumina-based nanocomposites obtained by doping with inorganic salt solutions: Application to immiscible and reactive systems, J. Eur. Ceram. Soc. 29 (2009) 59-66.

DOI: 10.1016/j.jeurceramsoc.2008.05.047

Google Scholar

[9] P. Palmero, M. Fornabaio, L. Montanaro, H. Reveron, C. Esnouf, J. Chevalier, Towards long lasting zirconia-based composites for dental implants. Part I: Innovative synthesis, microstructural characterization and in vitro stability, Biomaterials 50 (2015).

DOI: 10.1016/j.biomaterials.2015.01.018

Google Scholar

[10] H. Reveron, M. Fornabaio, P. Palmero, T. Fürderer, E. Adolfsson, V. Lughi, A. Bonifacio, V. Sergo, L. Montanaro, J. Chevalier, Towards long lasting zirconia-based composites for dental implants: Transformation induced plasticity and its consequence on ceramic reliability, Acta Biomater. 48 (2017).

DOI: 10.1016/j.actbio.2016.11.040

Google Scholar

[11] A. Douy, M. Capron, Crystallisation of spray-dried amorphous precursors in the SrO–Al2O3 system: a DSC study, J. Eur. Ceram. Soc., 23 (2003) 2075-(2081).

DOI: 10.1016/s0955-2219(03)00015-3

Google Scholar

[12] M. Fornabaio, P. Palmero, R. Traverso, C. Esnouf, H. Reveron, J. Chevalier, L. Montanaro, Zirconia-based composites for biomedical applications: Role of second phases on composition, microstructure and zirconia transformability. J. Eur. Ceram. Soc. 35 (2015).

DOI: 10.1016/j.jeurceramsoc.2015.04.027

Google Scholar

[13] J. Fischer, B. Stawarczyk, Compatibility of machined Ce-TZP/Al2O3 nanocomposite and a veneering ceramic. Dental. Mater., 23 (2007) 1500-1505.

DOI: 10.1016/j.dental.2007.01.005

Google Scholar

[14] S. Ban, H. Sato, Y. Suehiro, H. Nakanishi, M. Nawa, Biaxial flexural strength and low temperature degradation of Ce-TZP/Al2O3 nanocomposite and Y-TZP as dental restoratives. J Biomed. Mater. Res. Part B: Appl. Biomater., 87B (2008) 492-498.

DOI: 10.1002/jbm.b.31131

Google Scholar

[15] H. El Attaoui, M. Saâdaoui, J. Chevalier, G. Fantozzi, Static and cyclic crack propagation in Ce-TZP ceramics with different amounts of transformation toughening, J. Eur. Ceram. Soc., 27 (2007) 483-486.

DOI: 10.1016/j.jeurceramsoc.2006.04.108

Google Scholar

[16] P.F. Becher, C.H. Hsueh, P. Angelini, T.N. Tiegs, Toughening behavior in whisker-reinforced ceramic matrix composites, J. Am. Ceram. Soc., 71 (1988) 1050-1061.

DOI: 10.1111/j.1151-2916.1988.tb05791.x

Google Scholar

[17] F. Kern, A comparison of microstructure and mechanical properties of 12Ce-TZP reinforced with alumina and in situ formed strontium-or lanthanum hexaaluminate precipitates, J. Eur. Ceram. Soc., 34 (2014) 413-423.

DOI: 10.1016/j.jeurceramsoc.2013.08.037

Google Scholar

[18] J. Chevalier, L. Gremillard, S. Deville, Low-temperature degradation of zirconia and implications for biomedical implants, Ann. Rev. Mat. Res., 37 (2007) 1-32.

DOI: 10.1146/annurev.matsci.37.052506.084250

Google Scholar