[1]
Y. Wang, B. Li, T. Liu, C. Xu, Z. Ge, Controllable fabrication of superhydrophobic TiO2 coating withimproved transparency and thermostability, Colloids Surf. A: Physicochem. Eng. Aspects 441 (2014) 298– 305.
DOI: 10.1016/j.colsurfa.2013.09.023
Google Scholar
[2]
M. G. Krishna1, M. Vinjanampati, and D. Dhar Purkayastha, Metal oxide thin films and nanostructures for self-cleaning applications: current status and future prospects, Eur. Phys. J. Appl. Phys. (2013) 62: 30001.
DOI: 10.1051/epjap/2013130048
Google Scholar
[3]
S. Karuppuchamy, J. M. Jeong Super-hydrophilic amorphous titanium dioxide thin film deposited by cathodic electrodeposition, Materials Chemistry and Physics 93 (2005) 251–254.
DOI: 10.1016/j.matchemphys.2005.04.015
Google Scholar
[4]
R. Mechiakha, N. Ben Sedrine, M. Karyaouia, R. Chtouroub, Annealing temperature effect on the properties of mercury-doped TiO2 films prepared by sol–gel dip-coating technique, App. Surf. Sci. 257 (2011) 5529–5534.
DOI: 10.1016/j.apsusc.2011.01.028
Google Scholar
[5]
A.J.B. Milne, A. Amirfazli, The Cassie equation: How it is meant to be used, Adv. Colloid Interface Sci. 170 (2012) 48–55.
DOI: 10.1016/j.cis.2011.12.001
Google Scholar
[6]
X. Feng, L. Feng, M. Jin, J. Zhai, L. Jiang, D. Zhu, Reversible super-hydrophobicity to super-hydrophilicity transition of aligned ZnO nanorod films. J. Am. Chem. Soc. 126(2004) 62-63.
DOI: 10.1021/ja038636o
Google Scholar
[7]
N. J. Shirtcliffe, G. McHale, S. Atherton, M. I. Newton, An introduction to superhydrophobicity, Adv. Colloid Interface Sci. 161 (2010) 124–138.
DOI: 10.1016/j.cis.2009.11.001
Google Scholar
[8]
R. Mechiakh, F. Meriche, R. Kremer, R. Bensaha, B. Boudine, Optical and electrical properties dependence on thickness of screen-printed TiO2 thin films, Opt. Mater. 30 (2007) 645.
DOI: 10.1016/j.optmat.2007.02.047
Google Scholar
[9]
J A Guerra, J R Angulo1, S Gomez1, J Llamoza1, L M Montañez1, A Tejada1, J A Töfflinger, A Winnacker, R Weingärtner, The Urbach focus and optical properties of amorphous hydrogenated SiC thin films, J. Phys. D: Appl. Phys. 49 (2016) 195102.
DOI: 10.1088/0022-3727/49/19/195102
Google Scholar
[10]
B. D. Viezbicke, S. Patel, B. E. Davis, D. P. Birnie, Evaluation of the Tauc method for optical absorption edge determination: ZnO thin films as a model system, Phys. Status Solidi B 252(2015) 1700–1710.
DOI: 10.1002/pssb.201552007
Google Scholar
[11]
B N. Joshi, H Yoon, Sam S. Yoon, Structural, optical and electrical properties of tin oxide thin films by electrostatic spray deposition, J. Electrostat. 71(2013) 48-52.
DOI: 10.1016/j.elstat.2012.11.024
Google Scholar
[12]
B. Choudhury, A. Choudhury, Oxygen defect dependent variation of band gap, Urbach energy and luminescence property of anatase, anatase–rutile mixed phase and of rutile phases of TiO2 nanoparticles, Physica E: Low-dimensional Systems and Nanostructures 56 (2014).
DOI: 10.1016/j.physe.2013.10.014
Google Scholar
[13]
Morten E. Simonsen , Zheshen Li, Erik G. Søgaard, Influence of the OH groups on the photocatalytic activity and photoinduced hydrophilicity of microwave assisted sol–gel TiO2 film, App. Surf. Sci. 255 (2009) 8054–8062.
DOI: 10.1016/j.apsusc.2009.05.013
Google Scholar
[14]
V. Žunič, S. D. Škapin, D. Suvorov, The assembly of TiO2 nanoparticles into micrometer-sized structures, photocatalytically active under UV and Vis light, J. Am. Ceram. Soc. 98(2015) 2997-3005.
DOI: 10.1111/jace.13718
Google Scholar