Meta-Heuristics for Engineering Optimisation - Applications to Metal Forming Processes

Article Preview

Abstract:

This paper presents the use of meta-heuristics one of the most popular types of optimisation methods for solving real engineering applications. The general procedure of meta-heuristics is detailed. The applications are related to metal forming processes. Two design examples, optimisation of a strip coiling process and the non-circular wire drawing process, are demonstrated. The results obtained are compared while advantages and disadvantages of using the optimisers are discussed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

145-150

Citation:

Online since:

August 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] W. -W. Park, D. -K. Kim, Y. -T. Im, H. -C. Kwon, M. -S. Chun, Effects of processing parameters on elastic deformation of the coil during the thin-strip coiling process, Metals Mater. Inter., 20 (2014) 719-726.

DOI: 10.1007/s12540-014-4017-y

Google Scholar

[2] N. Pholdee, W. -W. Park, D. -K. Kim, Y. -T. Im, S. Bureerat, H. -C. Kwon, M. -S. Chun, Efficient hybrid evolutionary algorithm for optimization of a strip coiling process, Eng. Optimiz. 47 (2015) 521-532.

DOI: 10.1080/0305215x.2014.905551

Google Scholar

[3] R. Storn, K. Price, Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces, J. Global Optim. 11 (1997) 341-359.

Google Scholar

[4] S. Bureerat, J. Limtragool, Structural topology optimisation using simulated annealing with multiresolution design variables, Finite Elem. Anal. Des. 44 (2008) 738-747.

DOI: 10.1016/j.finel.2008.04.002

Google Scholar

[5] D. Karaboga, B. Basturk, A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm, J. Global Optim. 39 (2007) 459-471.

DOI: 10.1007/s10898-007-9149-x

Google Scholar

[6] R.V. Rao, V.J. Savsani, D.P. Vakharia, Teaching–learning-based optimization: A novel method for constrained mechanical design optimization problems, Comput. Aided Design. 43 (2011) 303-315.

DOI: 10.1016/j.cad.2010.12.015

Google Scholar

[7] K. Socha, M. Dorigo, Ant colony optimization for continuous domains, Eur. J. Oper. Res. 185 (2008) 1155-1173.

DOI: 10.1016/j.ejor.2006.06.046

Google Scholar

[8] A. Husseinzadeh Kashan, An efficient algorithm for constrained global optimization and application to mechanical engineering design: League championship algorithm (LCA), Comput. Aided Design. 43 (2011) 1769-1792.

DOI: 10.1016/j.cad.2011.07.003

Google Scholar

[9] N. Pholdee, S. Bureerat, W. -W. Park, D. -K. Kim, Y. -T. Im, H. -C. Kwon, M. -S. Chun, Optimization of flatness of strip during coiling process based on evolutionary algorithms, Int. J. Precis. Eng. Manuf., 16 (2015) 1493-1499.

DOI: 10.1007/s12541-015-0198-7

Google Scholar

[10] A. Kaveh, S. Talatahari, A novel heuristic optimization method: charged system search, Acta Mech. 213 (2010) 267-289.

DOI: 10.1007/s00707-009-0270-4

Google Scholar

[11] S. Bureerat, N. Pholdee, W. -W. Park, D. -K. Kim, An Improved Teaching-Learning Based Optimization for Optimization of Flatness of a Strip During a Coiling Process, in: International Workshop on Multi-disciplinary Trends in Artificial Intelligence, Springer, 2016, pp.12-23.

DOI: 10.1007/978-3-319-49397-8_2

Google Scholar

[12] H.M. Baek, S.K. Hwang, H.S. Joo, Y. -T. Im, I. -H. Son, C.M. Bae, The effect of a non-circular drawing sequence on delamination characteristics of pearlitic steel wire, Mater. Des., 62 (2014) 137-148.

DOI: 10.1016/j.matdes.2014.05.014

Google Scholar

[13] N. Pholdee, H.M. Baek, S. Bureerat, Y. -T. Im, Process optimization of a non-circular drawing sequence based on multi-surrogate assisted meta-heuristic algorithms, J. Mech. Sci. Technol. 29 (2015) 3427-3436.

DOI: 10.1007/s12206-015-0741-6

Google Scholar

[14] O. Yew-Soon, Z. Zongzhao, L. Dudy, Curse and Blessing of Uncertainty in Evolutionary Algorithm Using Approximation, in: IEEE Congress on Evolutionary Computation (CEC 2006), 2006, pp.2928-2935.

DOI: 10.1109/cec.2006.1688677

Google Scholar