[1]
R.K. Dwari, M.N. Biswas, B.C. Meikap, Performance characteristics for particles of sand FCC and fly ash in a novel hydrocyclone, Chem. Eng. Sci. 59 (2004) 671–684.
DOI: 10.1016/j.ces.2003.11.015
Google Scholar
[2]
D. Bradley, The Hydrocyclone, first ed., Pergamon, London, U.K., 1965, p.2.
Google Scholar
[3]
L.Y. Chu, W.M. Chen, X.Z. Lee, Effect of structural modification on hydrocyclone performance, Sep. Purif. Technol. 21 (2000) 71–86.
Google Scholar
[4]
L.Y. Chu, Q. Luo, Hydrocyclone with high separation sharpness, Filtr. & Sep. 31 (1994) 733–736.
Google Scholar
[5]
P. Supachart, P. Kruakaew, T. Swasdisevi, P. Wongsarivej, Effects of vortex finder, inlet, and body diameter on separation efficiency of hydrocyclone for crude palm oil industry, Key Eng. Mater. 659 (2015) 652–658.
DOI: 10.4028/www.scientific.net/kem.659.652
Google Scholar
[6]
E.C. Statie, M.E. Salcudean, I.S. Gartshore, The influence of hydrocyclone geometry on separation and fibre classification, Filtr. & Sep. 38 (2001) 36–41.
DOI: 10.1016/s0015-1882(01)80380-3
Google Scholar
[7]
R. Xiang, S.H. Park, K.W. Lee, Effects of cone dimension on cyclone performance, J. Aerosol Sci. 32 (2001) 549–561.
DOI: 10.1016/s0021-8502(00)00094-x
Google Scholar
[8]
H. Yoshida, Y. Hayase, K. Fukui, T. Yamamoto, Effect of conical length on separation performance of sub-micron particles by electrical hydro-cyclone, Powder Technol. 219 (2012) 29–36.
DOI: 10.1016/j.powtec.2011.12.002
Google Scholar
[9]
N. Orrasin, T. Swasdisevi, P. Wongsarivej, Regression model for pressure drop of 50 mm solid–liquid hydrocyclone, KMUTT Research and Development Journal 1 (2014) 29–41.
Google Scholar
[10]
R. Sabbagh, M.G. Lipsett, C.R. Koch, D.S. Nobes, An experimental investigation on hydrocyclone underflow pumping, Powder Technol. 305 (2016) 98–107.
DOI: 10.1016/j.powtec.2016.09.045
Google Scholar
[11]
R.K. Dubey, E. Climent, C. Banerjee, A.K. Majumder, Performance monitoring of a hydrocyclone based on underflow discharge angle, Int. J. Miner. Process. 154 (2016) 41–52.
DOI: 10.1016/j.minpro.2016.07.002
Google Scholar
[12]
K. Heiskanen, Particle Classification, first ed., Chapman & Hall, London, 1993, p.71–74.
Google Scholar
[13]
L. Svarovsky, Solid–Liquid Separation, fourth ed., Butterworth-Heinemann, Oxford, 2000, p.214.
Google Scholar
[14]
M. Antunes, R.A. Medronho, Bradley hydrocyclone, Design and performance analysis, in: L. Svarovsky, M.T. Thew (Eds. ), Hydrocyclones. Analysis and Applications. Dordrecht: Kluwer Academic Publishers, 1992, p.3–13.
DOI: 10.1007/978-94-015-7981-0_1
Google Scholar
[15]
R. Azevedo, C.O. Veloso, R.A. Medronho, Performance dehidrociclones cbv-demco 4h, in: Proceedings of the XXII Brazilian Congress on Particulate Systems, Friburgo, Brazil, 1990, p.481–488.
Google Scholar
[16]
M.A.Z. Coelho, R.A. Medronho, A model for performance prediction of hydrocyclones, Chem. Eng. J. 84 (2001) 7–14.
Google Scholar
[17]
Information on https: /en. wikipedia. org/wiki/Mean_squared_error.
Google Scholar
[18]
P. Wongsarivej, W. Tanthapanichakoon, H. Yoshida, K. Fukui, Classification of silica fine particles using a novel electric hydrocyclone, Sci. Technol. Adv. Mater. 6 (2005) 364–369.
Google Scholar
[19]
L.F. Martinez, A.G. Lavin, M.M. Mahamud, J.L. Bueno, Vortex finder optimum length in hydrocyclone separation, Chem. Eng. Process. 47 (2008) 192–199.
DOI: 10.1016/j.cep.2007.03.003
Google Scholar