[1]
F. Hassouna, J.M. Raquez, F. Addiego, P. Dubois, V. Toniazzo and D. Ruch, New approach on the development of plasticized polylactide (PLA): Grafting of poly(ethylene glycol) (PEG) via reactive extrusion. European Polymer Journal. 47 (11) (2011).
DOI: 10.1016/j.eurpolymj.2011.08.001
Google Scholar
[2]
B. Li, F.X. Dong, X.L. Wang, J. Yang, D.Y. Wang and Y.Z. Wang, Organically modified rectorite toughened poly(lactic acid): Nanostructures, crystallization and mechanical properties. European Polymer Journal. 45 (11) (2009) 2996-3003.
DOI: 10.1016/j.eurpolymj.2009.08.015
Google Scholar
[3]
E. Piorkowska, Z. Kulinski, A. Galeski and R. Masirek, Plasticization of semicrystalline poly(l-lactide) with poly(propylene glycol). Polymer. 47 (20) (2006) 7178-7188.
DOI: 10.1016/j.polymer.2006.03.115
Google Scholar
[4]
K. Pongtanayut, C. Thongpin and O. Santawitee, The effect of rubber on morphology, thermal properties and mechanical properties of PLA/NR and PLA/ENR blends, Energy Procedia 34 (2013) 888-897.
DOI: 10.1016/j.egypro.2013.06.826
Google Scholar
[5]
A.K. Mohapatra, S. Mohanty andS.K. Nayak, Effect of PEG on PLA/PEG Blend and Its Nanocomposites: A study of thermo-mechanical and morphological characterization, Polymer Composites. 35 (2014) 283–293.
DOI: 10.1002/pc.22660
Google Scholar
[6]
K. Sungsanit, N. Kao, S.N. Bhattacharya, Properties of linear poly(lactic acid)/polyethylene glycol, Polymer engineering & science. volume 52 (1) (2012) 108–116.
DOI: 10.1002/pen.22052
Google Scholar
[7]
A.K. Mohapatra, S. Mohanty and S.K. Nayak, Properties and characterization of biodegradable poly(lactic acid)(PLA)/poly(ethylene glycol) (PEG) and PLA/PEG/organoclay: A study of crystallization kinetics, rheology, and compostability, Thermoplastic Composite Materials, (2014).
DOI: 10.1177/0892705713518812
Google Scholar
[8]
O. Martin, L. Averous, Poly(lactic acid): Plasticization and properties of biodegradable multiphase systems, Polymer. 42 (2001) 6209-6219.
DOI: 10.1016/s0032-3861(01)00086-6
Google Scholar
[9]
B.S. Park, J.C. Song, D.H. Park and K.B. Yoon, PLA/Chain-Extended PEG Blends with Improved Ductility, Journal of Applied Polymer Science, 123 (2012) 2360-2367.
DOI: 10.1002/app.34823
Google Scholar
[10]
N. Fu, G. Li, Q, Zhang, N. Wang and X. Qu, Preparation of functionalized core-shell structured polymer by seeded emulsion polymerization and investigation on toughening poly(butylenes terephthalate), RSC Advances, 4 (2014) 1067-1073.
DOI: 10.1039/c3ra44163f
Google Scholar
[11]
Y. Huang, C. Zhang, Y. Pan, W. Wang, L. Jiang and Y. Dan, Study on the effect of dicumyl peroxide on structure and properties of poly(lactic acid)/natural rubber blend, Journal of Polyumer Environment, 21 (2013) 375-387.
DOI: 10.1007/s10924-012-0544-0
Google Scholar
[12]
M. Khodabandelou, M.K.R. Aghjeh and M.M. Mazidj, Fracture toughness and failure mechanisms in unvulcanized and dynamically vulcanized PP/EPDM/MECNT blend-nanocomposites, RSC Advances, 5 (2015) 70817-70831.
DOI: 10.1039/c5ra12087j
Google Scholar
[13]
N. Lopattananon, J. Julyanon, A. Masa, A. Kaesaman, C. Thongpin and T. Sakai, The role of nanofillers on (natural rubber)/(ethylene vinyl acetate)/clay nanocomposite in blending and foaming, Journal of Vinyl and Additive Technology, 21 (2015).
DOI: 10.1002/vnl.21368
Google Scholar
[14]
G. Ozkoc and S. Kemaloglu, Morphology, Biodegradability, mechnical and thermal properties of nanocomposite films based on PLA and plasticized PLA.
DOI: 10.1002/app.30772
Google Scholar
[15]
A. Al-Itry, K. Lamnawar and A. Maazouz, Improvement of thermal stability , rheological and mechanica; properties of PLA, PBAT and their blends by reactive extrusion with functionalized epoxy, Polymer Degradation and Stability, 97 (2012).
DOI: 10.1016/j.polymdegradstab.2012.06.028
Google Scholar