p.527
p.532
p.538
p.544
p.550
p.556
p.563
p.570
p.581
Effect of Calcium Carbonate on Compressive Strength and Physical Properties of Alkali-Activated Lightweight Concrete
Abstract:
This study presents the compressive strength and physical properties of alkali-activated lightweight concrete. Alkali-activated lightweight concrete was synthesized with fly ash, calcium carbonate and sodium hydroxide solution. Calcium carbonate was designed to replace part of fly ash at 5 and 10 wt.%. Sodium hydroxide solution at 5, 7.5 and 10 M was used as a liquid solution. Liquid to ash ratio (L/A ratio) at 0.45 was designed and aluminium powder was used as a foaming agent. The results showed that, the compressive strength of alkali-activated lightweight concrete made with fly ash was increased with NaOH concentration increased. The maximum compressive strength at 6.0 MPa was obtained from 10M NaOH mixture. For fly ash-calcium carbonate system, the compressive strength of lightweight concrete was improved when containing calcium carbonated, especially at 5 and 7.5 M NaOH mixtures. The maximum of compressive strength at 8.1 MPa and bulk density were obtained from the 5 wt.% calcium carbonated with 10M NaOH mixture. Water absorption and voids of all mixtures trend to decrease with increased NaOH concentration. XRD showed the sodium aluminum silicate hydrated as an alkali-activated product and composed of Si/Al atomic ratio at 2.1 and Na/Al atomic ratio at 1.4, respectively. Bulk density and compressive strength of alkali-activated lightweight concrete made with both fly ash and fly ash-calcium carbonated were acceptable in accordance with the specified criteria of TIS 2601. The well pore structure distribution of alkali-activated lightweight concrete was acceptable.
Info:
Periodical:
Pages:
550-555
Citation:
Online since:
August 2017
Authors:
Keywords:
Price:
Сopyright:
© 2017 Trans Tech Publications Ltd. All Rights Reserved
Share:
Citation: