[1]
P.D. Tennis, M.L. Leming, D.J. Akers, Pervious concrete pavaments, EB302, Portland Cement Association, Skokie, Illinois, (2004).
Google Scholar
[2]
V.R. Schaefer, K. Wang, M.T. Suleiman, J.T. Kevern, Mix design development for pervious concrete in cold weather cilmates, Final report, National Concrete Pavement Technology Center, Iowa State University, Ames, IA, (2006).
DOI: 10.31274/rtd-20200618-22
Google Scholar
[3]
S.B. Park, D.S. Seo, J. Lee, Studies on the sound absorption characteristic of porous concrete based on the conrent of recycled aggregate and target vold ratio, Cem. Concr., Res. 35 (9) (2015) 1846-1854.
DOI: 10.1016/j.cemconres.2004.12.009
Google Scholar
[4]
O. Deo, N. Neithalath, Compressive behavior of pervious concretes and a quantification of the influence of random pore structure features, Mater. Sci. Eng., A 528 (2010) 402-412.
DOI: 10.1016/j.msea.2010.09.024
Google Scholar
[5]
ACI 522R-10, Report on pervious concrete, ACI 522R-102010.
Google Scholar
[6]
Kamseu E, Nait-Ali B, Bignozzi MC, Leonelli C, Rossignol S, SmithDS. Bulk composition and microstructure dependence of effective ther-mal conductivity of porous inorganic polymer cements. J Eur Ceram Soc2012; 32: 1593–603.
DOI: 10.1016/j.jeurceramsoc.2011.12.030
Google Scholar
[7]
Arellano Aguilar R, Burciaga Díaz O, Escalante García JI. Lightweightconcretes of activated metakaolin-fly ash binders, with blast furnace slagaggregates. Constr Build Mater 2010; 24: 1166–75.
DOI: 10.1016/j.conbuildmat.2009.12.024
Google Scholar
[8]
Liu LP, Cui XM, Qiu SH, Yu JL, Zhang L. Preparation of phosphoricacid-based porous geopolymers. Appl Clay Sci 2010; 50: 600–3.
Google Scholar
[9]
Bell JL, Kriven WM. Preparation of ceramic foams from metakaolin-basedgeopolymer gels. Ceram Eng Sci Proc 2009; 29: 97–111.
Google Scholar
[10]
Landi E, Medri V, Papa E, Dedecek J, Klein P, Benito P, et al. Alkali-bondedceramics with hierarchical tailored porosity. Appl Clay Sci 2013; 73: 56–64.
DOI: 10.1016/j.clay.2012.09.027
Google Scholar
[11]
Prud'homme E, Michaud P, Joussein E, Peyratout C, Smith A, RossignolS. In situ inorganic foams prepared from various clays at low temperature. Appl Clay Sci 2011; 51: 15–22.
DOI: 10.1016/j.clay.2010.10.016
Google Scholar
[12]
Shiu H-S, Lin K-L, Chao S-J, Hwang C-L, Cheng T-W. Effects of foamagent on characteristics of thin-film transistor liquid crystal display wasteglass-metakaolin-based cellular geopolymer. Environ Prog Sustain Energy2014; 33: 538–50.
DOI: 10.1002/ep.11798
Google Scholar
[13]
Davidovits J. Geopolymer chemistry and applications. 3rd ed. France: Institut Géopolymère; (2011).
Google Scholar
[14]
American Society of Testing and Materials, Standard Test Method for Compressive Strength of Hydraulic Cement Mortars, ASTM C 109/C109M -95, Annual Book of ASTM Standards, (1995).
Google Scholar
[15]
C. Lian, Y. Zhuge, S. Beecham (2011). The relationship betwwn porosity and strength for porous concrete, Constr. Build. Mater. 25, 4294-4298.
DOI: 10.1016/j.conbuildmat.2011.05.005
Google Scholar
[16]
American Society of Testing and Materials, Standard Test Method for Air Content of Hydraulic Cement Mortar, ASTM C 185 - 08, Annual Book of ASTM Standards, (2008).
Google Scholar
[17]
P. Keawpapasson, C. Tippayasam, S. Ruangjan, P. Thavorniti, T. Panyathanmaporn, A. Fontaine, C. Leonelli, D. Chaysuwan. (2014), Metakaolin-Based Porous Geopolymer with Aluminium Powder, Key Engineering Materials Vol. 608 (2014), 132-138.
DOI: 10.4028/www.scientific.net/kem.608.132
Google Scholar
[18]
Forquin, P., A. Arias and R. Zaera. 2008. Role of Porosity in Controlling the Mechanical and Impact Behaviours of Cement-Based Materials. International Journal of Impact Engineering. 35(3): 133-146.
DOI: 10.1016/j.ijimpeng.2007.01.002
Google Scholar