[1]
Z.L. Wang, Characterizing the structure and properties of individual wire-like nanoentities, Adv Mater 12 (2000) 1295–1298.
DOI: 10.1002/1521-4095(200009)12:17<1295::aid-adma1295>3.0.co;2-b
Google Scholar
[2]
Z. Li, C. Wang, One-Dimensional Nanostructures - Electrospinning Technique and Unique Nanofibers, Springer, Heidelberg, (2013).
Google Scholar
[3]
M.R. Ladd, T.K. Hill, J.J. Yoo, S.J. Lee, Electrospun Nanofibers in Tissue Engineering, in T. Lin (Ed. ), Nanofibers - Production, Properties and Functional Applications, InTech, 2014, 347-372.
Google Scholar
[4]
N. Tucker, J. Stanger, M.P. Staiger, H. Razzaq, K. Hofman, The history of the science and technology of electrospinning from 1600 to 1995, J. Eng. Fiber. Fabr. 7 (2012) 63-73.
Google Scholar
[5]
K. Park, W.H. Park, J.S. Son, D.K. Han, Biomedical Polymer Nanofibers for Emerging Technology, in: D. Shi (Ed), NanoScience in Biomedicine, Springer-Verlag GmbH, Heidelberg, 2009, 21-42.
DOI: 10.1007/978-3-540-49661-8_2
Google Scholar
[6]
A.L. Yarin, B. Pourdeyhimi, S. Ramakrishna, Fundamentals and Applications of Micro- and Nanofibers, Cambridge University Press, Cambridge, (2014).
Google Scholar
[7]
P. Bhattarai, K. B. Thapa, R. B., Basnet, S. Sharma, Electrospinning: how to produce nanofibers using most inexpensive technique? An insight into the real challenges of electrospinning such nanofibers and its application areas, International Journal of Biomedical and Advance Research 5 (2014).
DOI: 10.7439/ijbar.v5i9.854
Google Scholar
[8]
M. Mirjalili, S. Zohoori, Review for application of electrospinning and electrospun nanofibers technology in textile industry, J Nanostruct Chem 6 (2016) 207–213.
DOI: 10.1007/s40097-016-0189-y
Google Scholar
[9]
M. Zafar, S. Najeeb, Z. Khurshid, M. Vazirzadeh, S. Zohaib, B. Najeeb, F. Sefat, Potential of electrospun nanofibers for biomedical and dental applications, Materials 9 (2016) 73-94.
DOI: 10.3390/ma9020073
Google Scholar
[10]
F. L Zhou, R. H Gong, I. Porat, Mass production of nanofiber assemblies by electrostatic spinning, Polym. Int. 58 (2009) 331–342.
DOI: 10.1002/pi.2521
Google Scholar
[11]
F. Li, Y. Zhao, Y. Song, Core-Shell Nanofibers: Nano Channel and Capsule by Coaxial Electrospinning, in A. Kumar (Ed. ), Nanofibers, Intech, 2010, 419 - 438.
DOI: 10.5772/8166
Google Scholar
[12]
Y. Qin, Medical Textile Materials, Woodhead Publishing, Cambridge, (2016).
Google Scholar
[13]
P.H. Kim, J.Y. Cho, Myocardial tissue engineering using electrospun nanofiber composites, BMB Rep. 49 (2016) 26–36.
DOI: 10.5483/bmbrep.2016.49.1.165
Google Scholar
[14]
A. Repanas, W.F. Wolkers, O. Gryshkov, P. Kalozoumis, M. Mueller, Coaxial electrospinning as a process to engineer biodegradable polymeric scaffolds as drug delivery systems for anti-inflammatory and anti-thrombotic pharmaceutical agents, Clin Exp Pharmacol 5 (2015).
DOI: 10.4172/2161-1459.1000192
Google Scholar
[15]
A.J. Hassiba, M.E. El Zowalaty, G.K. Nasrallah, T.J. Webster, A.S. Luyt, A.M. Abdullah, A. A Elzatahry, Review of recent research on biomedical applications of electrospun polymer nanofibers for improved wound healing, Nanomedicine 6 (2016).
DOI: 10.2217/nnm.15.211
Google Scholar
[16]
J. Cui, L. Qiu, Y. Qiu, Q. Wang, Q. Wei, Co-electrospun nanofibers of PVA-SbQ and Zein for wound healing, J. Appl. Polym. Sci. 132 (2015).
DOI: 10.1002/app.42565
Google Scholar
[17]
Y.Z. Zhang, X. Wang, Y. Feng, J. Li, C.T. Lim, S. Ramakrishna, Coaxial electrospinning of (fluorescein isothiocyanate-conjugated bovine serum albumin)-encapsulated poly(epsilon-caprolactone) nanofibers for sustained release, Biomacromolecules 7 (2006).
DOI: 10.1021/bm050743i
Google Scholar
[18]
U.M. Krishnan, S. Sethuraman, The integration of nanotechnology and biology for cell engineering: promises and challenges, Nanomaterials and Nanotechnology 3 (2013) 1-19.
DOI: 10.5772/57312
Google Scholar
[19]
Y. Lu, J. Huang, G. Yu, R. Cardenas, S. Wei, E.K. Wujcik, Z. Guo, Coaxial electrospun fibers: applications in drug delivery and tissue engineering, Wiley Interdiscip Rev Nanomed Nanobiotechnol. 8 (2016) 654-677.
DOI: 10.1002/wnan.1391
Google Scholar
[20]
M. Hasan, M. Alam, K.A. Nayem, Application of electrospinning techniques for the production of tissue engineering scaffolds: a review, European Scientific Journal 10 (2014) 265-278.
Google Scholar
[21]
T. Lin, X. Wang, Needleless electrospinning of nanofibers - Technology and Applications, CRC Press, Boca Raton, FL, (2013).
Google Scholar
[22]
R. Ramakrishnan, J. Gimbun, F. Samsuri, V. Narayanamurthy, N. Gajendran, Y. Sudha Lakshmi, D. Stranska, B. Ranganathan, Needleless Electrospinning Technology – An Entrepreneurial Perspective, Indian Journal of Science and Technology 9 (2016).
DOI: 10.17485/ijst/2016/v9i15/91538
Google Scholar
[23]
D. Nurwaha, W. Han, X. Wang, Investigation of a New Needleless Electrospinning Method for the Production of Nanofibers, Journal of Engineered Fibers and Fabrics 8 (2013) 42-49.
DOI: 10.1177/155892501300800413
Google Scholar
[24]
A. Nazir, N. Khenoussi, L. Schacher, T. Hussain, D. Adolphe, A.H. Hekmati, Using the Taguchi method to investigate the effect of different parameters on mean diameter and variation in PA-6 nanofibres produced by needleless electrospinning, The Royal Society of Chemistry 5(2015).
DOI: 10.1039/c5ra13649k
Google Scholar
[25]
M. Dubský, Š. Kubinová, J. Širc, L. Voska, R. Zajíček, A. Zajícová, P. Lesný, A. Jirkovská, J. Michálek, M. Munzarová, V. Holáň, E. Syková, Nanofibers prepared by needleless electrospinning technology as scaffolds for wound healing, Journal of Materials Science: Materials in Medicine 23 (2012).
DOI: 10.1007/s10856-012-4577-7
Google Scholar
[26]
D. Lia, T. Wu, N. Hea, J. Wang, W. Chen, L. He, C. Huang, H.A. EI-Hamsharyd, S.S. Al-Deyabd, Q. Kea, X. Moa, Three-dimensional polycaprolactone scaffold via needleless electrospinning promotes cell proliferation and infiltration, Colloids and Surfaces B: Biointerfaces, 121 (2014).
DOI: 10.1016/j.colsurfb.2014.06.034
Google Scholar
[27]
J. Sirc, S. Kubinova, R. Hobzova, D. Stranska, P. Kozlik, Z. Bosakova, Controlled gentamicin release from multi-layered electrospun nanofibrous structures of various thicknesses, Int. J. Nanomed. 7 (2012) 5315-5325.
DOI: 10.2147/ijn.s35781
Google Scholar
[28]
S. Subianto, D. Cornu, S. Cavaliere, Fundamentals of Electrospinning, in S. Cavaliere (Ed. ), Electrospinning for advanced energy and environmental applications, CRC Press, Boca Raton, 2016, 1-28.
DOI: 10.1201/b18838-2
Google Scholar
[29]
C. Chang, K. Limkrailassiri, L. Lin, Continuous near-field electrospinning for large area deposition of orderly nanofiber patterns, Applied physics letters 93 (2008) 123111-123113.
DOI: 10.1063/1.2975834
Google Scholar
[30]
F. Yan, H. Chen, L. Zheng, W. Chen, Y. Liu, Q. Hu, The controllable PVA-chitosan fiber prepared by the near-field electro spinning for tissue engineering, Advance Journal of Food Science and Technology 5 (2013) 1073-1078.
DOI: 10.19026/ajfst.5.3208
Google Scholar
[31]
Y.K. Fuh, S.Z. Chen, Z.Y. He, Direct-write, highly aligned chitosan-poly(ethylene oxide) nanofiber patterns for cell morphology and spreading control, Nanoscale Res Lett. 8 (2013) 97- 106.
DOI: 10.1186/1556-276x-8-97
Google Scholar
[32]
N.R. Boyd, R., Boyd, G.P. Simon, D.R. Nisbet, Synthetic Multi-level Matrices for Bone Regeneration, in H.S. Bernstein (Ed. ), Tissue Engineering in Regenerative Medicine, Springer, Heidelberg, 2011, 99-122.
DOI: 10.1007/978-1-61779-322-6_6
Google Scholar
[33]
W. Cui, Y. Zhou, J. Chang, Electrospun nanofibrous materials for tissue engineering and drug delivery, Science and Technology of Advanced Materials 11 (2010) 2-12.
DOI: 10.1088/1468-6996/11/1/014108
Google Scholar
[34]
S. Zaiss, T.D. Brown, J.C. Reichert, A. Berner, Poly(e-caprolactone) Scaffolds Fabricated by Melt Electrospinning for Bone Tissue Engineering, Materials 9 (2016) 232-247.
DOI: 10.3390/ma9040232
Google Scholar
[35]
I. Garcia-Orue, G. Gainza, S. Villullas, J.L. Pedraz, R.M. Hernandez, M. Igartua, Nanotechnology approaches for skin wound regeneration using drug-delivery systems, in A.M. Grumezescu (Ed), Nanobiomaterials in Soft Tissue Engineering Applications of Nanobiomaterials, Elsevier, Cambridge, 2016, 31-56.
DOI: 10.1016/b978-0-323-42865-1.00002-7
Google Scholar
[36]
K. Ulubayram, S. Calamak, R. Shahbazi, I. Eroglu, Nanofibers Based Antibacterial Drug Design, Delivery and Applications, Current Pharmaceutical Design 21 (2015) 1930-(1943).
DOI: 10.2174/1381612821666150302151804
Google Scholar
[37]
J. Fang, X. Wang, T. Lin, Functional Applications of Electrospun Nanofibers, in T. Lin (Ed), Nanofibers – Production, Properties and Functional Applications, InTech, 2011, 287- 326.
DOI: 10.5772/24998
Google Scholar
[38]
Y. Yu, L. Gu, C. Wang, A. Dhanabalan, A.P.A. van, J. Maier, J. Encapsulation of Sn/carbon nanoparticles in bamboo-like hollow carbon nanofibers as an anode material in lithium-based batteries, Angewandte Chemie 48 (2009) 6485-6489.
DOI: 10.1002/anie.200901723
Google Scholar
[39]
K. Kataria, A. Gupta, G. Rath, R.B. Mathur, S.R. Dhakate, In vivo wound healing performance of drug loaded electrospun composite nanofibers transdermal patch, Int. J. Pharm. 469 (2014) 102-110.
DOI: 10.1016/j.ijpharm.2014.04.047
Google Scholar
[40]
X. Xu, W. Zhong, S. Zhou, A. Trajtman, M. Alfa, Electrospun PEG-PLA nanofibrous membrane for sustained release of hydrophilic antibiotics, J. Appl. Polym. Sci. 118 (2010) 588-595.
DOI: 10.1002/app.32415
Google Scholar
[41]
L.J. del Valle, L. Franco, R. Katsarava, J. Puiggali, Electrospun biodegradable polymers loaded with bactericide agents, AIMS Molecular Science 3 (2016) 52-87.
DOI: 10.3934/molsci.2016.1.52
Google Scholar
[42]
S.J. Kim, Y.S. Nam, D.M. Rhee, Preparation and characterization of antimicrobial polycarbonate nanofibrous membrane, Eur. Polym. J. 43 (2007) 3146-3152.
DOI: 10.1016/j.eurpolymj.2007.04.046
Google Scholar
[43]
R.A. Thakur, C.A. Florek, J. Kohn, B.B. Michniak, Electrospun nanofibrous polymeric scaffold with targeted drug release profiles for potential application as wound dressing, Int. J. Pharm. 364 (2008), 87-93.
DOI: 10.1016/j.ijpharm.2008.07.033
Google Scholar
[44]
A.D. Pinzon-Garcıa et al., Efficient cutaneous wound healing using bixin-loaded PCL nanofibers in diabetic mice, Biomed Mater Res Part B (2016) 1-12.
DOI: 10.1002/jbm.b.33724
Google Scholar
[45]
L.R. Manea, I. Stănescu, E. Nechita, M. Agop, Some Fractal Logical Elements in Nanostructures, Journal of Computational and Theoretical Nanoscience, 12 (2015), 4373-4376.
DOI: 10.1166/jctn.2015.4370
Google Scholar
[46]
L.R. Manea, E. Nechita, I. Sandu, Electrospinning of polyetherimide solution: efect of nozzle sizes on the diameter of the fiber, Revista de Chimie, 66 (2015), 11, 1841-1846.
Google Scholar