Technological Progress in Manufacturing Electrospun Nanofibers for Medical Applications

Article Preview

Abstract:

The very adaptable performance of electrospun nanofibers is the result of the choice of the natural or synthetic polymer/polymer blend, work environmentand process parameters, which allows the appropriate control of morphology and properties of the products. To offer an ample update on progress in the field, this review provides an overview of the modification or functionalization of nanofibers for biomedical applications, intended to engineer precise features that will enhance their end use performance. Diverse concepts, such as single electrospinning, co-electrospinning, coaxial electrospinning or miniemulsion electrospinning, and technological factors that can influence the capability to incorporate biological agents with diverse features and to modify the release conduct are studied. The many bioactive molecules that can be integrated into nanofibers via diverse approaches are revised, including bactericide agents, various drugs, proteins and enzymes.Future trends of nanofiber functionalization in order to improve their performance and function in biomedical applications are presented.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

126-131

Citation:

Online since:

August 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Z.L. Wang, Characterizing the structure and properties of individual wire-like nanoentities, Adv Mater 12 (2000) 1295–1298.

DOI: 10.1002/1521-4095(200009)12:17<1295::aid-adma1295>3.0.co;2-b

Google Scholar

[2] Z. Li, C. Wang, One-Dimensional Nanostructures - Electrospinning Technique and Unique Nanofibers, Springer, Heidelberg, (2013).

Google Scholar

[3] M.R. Ladd, T.K. Hill, J.J. Yoo, S.J. Lee, Electrospun Nanofibers in Tissue Engineering, in T. Lin (Ed. ), Nanofibers - Production, Properties and Functional Applications, InTech, 2014, 347-372.

Google Scholar

[4] N. Tucker, J. Stanger, M.P. Staiger, H. Razzaq, K. Hofman, The history of the science and technology of electrospinning from 1600 to 1995, J. Eng. Fiber. Fabr. 7 (2012) 63-73.

Google Scholar

[5] K. Park, W.H. Park, J.S. Son, D.K. Han, Biomedical Polymer Nanofibers for Emerging Technology, in: D. Shi (Ed), NanoScience in Biomedicine, Springer-Verlag GmbH, Heidelberg, 2009, 21-42.

DOI: 10.1007/978-3-540-49661-8_2

Google Scholar

[6] A.L. Yarin, B. Pourdeyhimi, S. Ramakrishna, Fundamentals and Applications of Micro- and Nanofibers, Cambridge University Press, Cambridge, (2014).

Google Scholar

[7] P. Bhattarai, K. B. Thapa, R. B., Basnet, S. Sharma, Electrospinning: how to produce nanofibers using most inexpensive technique? An insight into the real challenges of electrospinning such nanofibers and its application areas, International Journal of Biomedical and Advance Research 5 (2014).

DOI: 10.7439/ijbar.v5i9.854

Google Scholar

[8] M. Mirjalili, S. Zohoori, Review for application of electrospinning and electrospun nanofibers technology in textile industry, J Nanostruct Chem 6 (2016) 207–213.

DOI: 10.1007/s40097-016-0189-y

Google Scholar

[9] M. Zafar, S. Najeeb, Z. Khurshid, M. Vazirzadeh, S. Zohaib, B. Najeeb, F. Sefat, Potential of electrospun nanofibers for biomedical and dental applications, Materials 9 (2016) 73-94.

DOI: 10.3390/ma9020073

Google Scholar

[10] F. L Zhou, R. H Gong, I. Porat, Mass production of nanofiber assemblies by electrostatic spinning, Polym. Int. 58 (2009) 331–342.

DOI: 10.1002/pi.2521

Google Scholar

[11] F. Li, Y. Zhao, Y. Song, Core-Shell Nanofibers: Nano Channel and Capsule by Coaxial Electrospinning, in A. Kumar (Ed. ), Nanofibers, Intech, 2010, 419 - 438.

DOI: 10.5772/8166

Google Scholar

[12] Y. Qin, Medical Textile Materials, Woodhead Publishing, Cambridge, (2016).

Google Scholar

[13] P.H. Kim, J.Y. Cho, Myocardial tissue engineering using electrospun nanofiber composites, BMB Rep. 49 (2016) 26–36.

DOI: 10.5483/bmbrep.2016.49.1.165

Google Scholar

[14] A. Repanas, W.F. Wolkers, O. Gryshkov, P. Kalozoumis, M. Mueller, Coaxial electrospinning as a process to engineer biodegradable polymeric scaffolds as drug delivery systems for anti-inflammatory and anti-thrombotic pharmaceutical agents, Clin Exp Pharmacol 5 (2015).

DOI: 10.4172/2161-1459.1000192

Google Scholar

[15] A.J. Hassiba, M.E. El Zowalaty, G.K. Nasrallah, T.J. Webster, A.S. Luyt, A.M. Abdullah, A. A Elzatahry, Review of recent research on biomedical applications of electrospun polymer nanofibers for improved wound healing, Nanomedicine 6 (2016).

DOI: 10.2217/nnm.15.211

Google Scholar

[16] J. Cui, L. Qiu, Y. Qiu, Q. Wang, Q. Wei, Co-electrospun nanofibers of PVA-SbQ and Zein for wound healing, J. Appl. Polym. Sci. 132 (2015).

DOI: 10.1002/app.42565

Google Scholar

[17] Y.Z. Zhang, X. Wang, Y. Feng, J. Li, C.T. Lim, S. Ramakrishna, Coaxial electrospinning of (fluorescein isothiocyanate-conjugated bovine serum albumin)-encapsulated poly(epsilon-caprolactone) nanofibers for sustained release, Biomacromolecules 7 (2006).

DOI: 10.1021/bm050743i

Google Scholar

[18] U.M. Krishnan, S. Sethuraman, The integration of nanotechnology and biology for cell engineering: promises and challenges, Nanomaterials and Nanotechnology 3 (2013) 1-19.

DOI: 10.5772/57312

Google Scholar

[19] Y. Lu, J. Huang, G. Yu, R. Cardenas, S. Wei, E.K. Wujcik, Z. Guo, Coaxial electrospun fibers: applications in drug delivery and tissue engineering, Wiley Interdiscip Rev Nanomed Nanobiotechnol. 8 (2016) 654-677.

DOI: 10.1002/wnan.1391

Google Scholar

[20] M. Hasan, M. Alam, K.A. Nayem, Application of electrospinning techniques for the production of tissue engineering scaffolds: a review, European Scientific Journal 10 (2014) 265-278.

Google Scholar

[21] T. Lin, X. Wang, Needleless electrospinning of nanofibers - Technology and Applications, CRC Press, Boca Raton, FL, (2013).

Google Scholar

[22] R. Ramakrishnan, J. Gimbun, F. Samsuri, V. Narayanamurthy, N. Gajendran, Y. Sudha Lakshmi, D. Stranska, B. Ranganathan, Needleless Electrospinning Technology – An Entrepreneurial Perspective, Indian Journal of Science and Technology 9 (2016).

DOI: 10.17485/ijst/2016/v9i15/91538

Google Scholar

[23] D. Nurwaha, W. Han, X. Wang, Investigation of a New Needleless Electrospinning Method for the Production of Nanofibers, Journal of Engineered Fibers and Fabrics 8 (2013) 42-49.

DOI: 10.1177/155892501300800413

Google Scholar

[24] A. Nazir, N. Khenoussi, L. Schacher, T. Hussain, D. Adolphe, A.H. Hekmati, Using the Taguchi method to investigate the effect of different parameters on mean diameter and variation in PA-6 nanofibres produced by needleless electrospinning, The Royal Society of Chemistry 5(2015).

DOI: 10.1039/c5ra13649k

Google Scholar

[25] M. Dubský, Š. Kubinová, J. Širc, L. Voska, R. Zajíček, A. Zajícová, P. Lesný, A. Jirkovská, J. Michálek, M. Munzarová, V. Holáň, E. Syková, Nanofibers prepared by needleless electrospinning technology as scaffolds for wound healing, Journal of Materials Science: Materials in Medicine 23 (2012).

DOI: 10.1007/s10856-012-4577-7

Google Scholar

[26] D. Lia, T. Wu, N. Hea, J. Wang, W. Chen, L. He, C. Huang, H.A. EI-Hamsharyd, S.S. Al-Deyabd, Q. Kea, X. Moa, Three-dimensional polycaprolactone scaffold via needleless electrospinning promotes cell proliferation and infiltration, Colloids and Surfaces B: Biointerfaces, 121 (2014).

DOI: 10.1016/j.colsurfb.2014.06.034

Google Scholar

[27] J. Sirc, S. Kubinova, R. Hobzova, D. Stranska, P. Kozlik, Z. Bosakova, Controlled gentamicin release from multi-layered electrospun nanofibrous structures of various thicknesses, Int. J. Nanomed. 7 (2012) 5315-5325.

DOI: 10.2147/ijn.s35781

Google Scholar

[28] S. Subianto, D. Cornu, S. Cavaliere, Fundamentals of Electrospinning, in S. Cavaliere (Ed. ), Electrospinning for advanced energy and environmental applications, CRC Press, Boca Raton, 2016, 1-28.

DOI: 10.1201/b18838-2

Google Scholar

[29] C. Chang, K. Limkrailassiri, L. Lin, Continuous near-field electrospinning for large area deposition of orderly nanofiber patterns, Applied physics letters 93 (2008) 123111-123113.

DOI: 10.1063/1.2975834

Google Scholar

[30] F. Yan, H. Chen, L. Zheng, W. Chen, Y. Liu, Q. Hu, The controllable PVA-chitosan fiber prepared by the near-field electro spinning for tissue engineering, Advance Journal of Food Science and Technology 5 (2013) 1073-1078.

DOI: 10.19026/ajfst.5.3208

Google Scholar

[31] Y.K. Fuh, S.Z. Chen, Z.Y. He, Direct-write, highly aligned chitosan-poly(ethylene oxide) nanofiber patterns for cell morphology and spreading control, Nanoscale Res Lett. 8 (2013) 97- 106.

DOI: 10.1186/1556-276x-8-97

Google Scholar

[32] N.R. Boyd, R., Boyd, G.P. Simon, D.R. Nisbet, Synthetic Multi-level Matrices for Bone Regeneration, in H.S. Bernstein (Ed. ), Tissue Engineering in Regenerative Medicine, Springer, Heidelberg, 2011, 99-122.

DOI: 10.1007/978-1-61779-322-6_6

Google Scholar

[33] W. Cui, Y. Zhou, J. Chang, Electrospun nanofibrous materials for tissue engineering and drug delivery, Science and Technology of Advanced Materials 11 (2010) 2-12.

DOI: 10.1088/1468-6996/11/1/014108

Google Scholar

[34] S. Zaiss, T.D. Brown, J.C. Reichert, A. Berner, Poly(e-caprolactone) Scaffolds Fabricated by Melt Electrospinning for Bone Tissue Engineering, Materials 9 (2016) 232-247.

DOI: 10.3390/ma9040232

Google Scholar

[35] I. Garcia-Orue, G. Gainza, S. Villullas, J.L. Pedraz, R.M. Hernandez, M. Igartua, Nanotechnology approaches for skin wound regeneration using drug-delivery systems, in A.M. Grumezescu (Ed), Nanobiomaterials in Soft Tissue Engineering Applications of Nanobiomaterials, Elsevier, Cambridge, 2016, 31-56.

DOI: 10.1016/b978-0-323-42865-1.00002-7

Google Scholar

[36] K. Ulubayram, S. Calamak, R. Shahbazi, I. Eroglu, Nanofibers Based Antibacterial Drug Design, Delivery and Applications, Current Pharmaceutical Design 21 (2015) 1930-(1943).

DOI: 10.2174/1381612821666150302151804

Google Scholar

[37] J. Fang, X. Wang, T. Lin, Functional Applications of Electrospun Nanofibers, in T. Lin (Ed), Nanofibers – Production, Properties and Functional Applications, InTech, 2011, 287- 326.

DOI: 10.5772/24998

Google Scholar

[38] Y. Yu, L. Gu, C. Wang, A. Dhanabalan, A.P.A. van, J. Maier, J. Encapsulation of Sn/carbon nanoparticles in bamboo-like hollow carbon nanofibers as an anode material in lithium-based batteries, Angewandte Chemie 48 (2009) 6485-6489.

DOI: 10.1002/anie.200901723

Google Scholar

[39] K. Kataria, A. Gupta, G. Rath, R.B. Mathur, S.R. Dhakate, In vivo wound healing performance of drug loaded electrospun composite nanofibers transdermal patch, Int. J. Pharm. 469 (2014) 102-110.

DOI: 10.1016/j.ijpharm.2014.04.047

Google Scholar

[40] X. Xu, W. Zhong, S. Zhou, A. Trajtman, M. Alfa, Electrospun PEG-PLA nanofibrous membrane for sustained release of hydrophilic antibiotics, J. Appl. Polym. Sci. 118 (2010) 588-595.

DOI: 10.1002/app.32415

Google Scholar

[41] L.J. del Valle, L. Franco, R. Katsarava, J. Puiggali, Electrospun biodegradable polymers loaded with bactericide agents, AIMS Molecular Science 3 (2016) 52-87.

DOI: 10.3934/molsci.2016.1.52

Google Scholar

[42] S.J. Kim, Y.S. Nam, D.M. Rhee, Preparation and characterization of antimicrobial polycarbonate nanofibrous membrane, Eur. Polym. J. 43 (2007) 3146-3152.

DOI: 10.1016/j.eurpolymj.2007.04.046

Google Scholar

[43] R.A. Thakur, C.A. Florek, J. Kohn, B.B. Michniak, Electrospun nanofibrous polymeric scaffold with targeted drug release profiles for potential application as wound dressing, Int. J. Pharm. 364 (2008), 87-93.

DOI: 10.1016/j.ijpharm.2008.07.033

Google Scholar

[44] A.D. Pinzon-Garcıa et al., Efficient cutaneous wound healing using bixin-loaded PCL nanofibers in diabetic mice, Biomed Mater Res Part B (2016) 1-12.

DOI: 10.1002/jbm.b.33724

Google Scholar

[45] L.R. Manea, I. Stănescu, E. Nechita, M. Agop, Some Fractal Logical Elements in Nanostructures, Journal of Computational and Theoretical Nanoscience, 12 (2015), 4373-4376.

DOI: 10.1166/jctn.2015.4370

Google Scholar

[46] L.R. Manea, E. Nechita, I. Sandu, Electrospinning of polyetherimide solution: efect of nozzle sizes on the diameter of the fiber, Revista de Chimie, 66 (2015), 11, 1841-1846.

Google Scholar