[1]
Vallet-Regi, M. Introduction to the world of biomaterial, Ann. Quim. Int. Ed 93 (1997) S6–S14.
Google Scholar
[2]
T. Kokubo, H. Takadama, How useful is SBF in predicting in vivo bone bioactivity, Biomaterials 27 (2006) 2907- 2915.
DOI: 10.1016/j.biomaterials.2006.01.017
Google Scholar
[3]
S. Dyshlovenko, B. Pateyron, L. Pavlowski, D. Murano, Numerical simulation of hydroxyapatite powder behaviour in plasma jet, Surf. Coat. Technol. 179 (2004) 110-117.
DOI: 10.1016/j.surfcoat.2004.06.030
Google Scholar
[4]
D. Y. Lin, Y. T. Zhao, Preparation of Novel Hydroxyapatite/Yttria-Stabilized-Zirconia Gradient Coatings by Magnetron Sputtering, Adv. Eng. Mater. 13 (2011) B18-B24.
DOI: 10.1002/adem.201080025
Google Scholar
[5]
Y. K. Pan, C. Z. Chen, D. G. Wang, Z. Q. Lin, Preparation and bioactivity of micro-arc oxidized calcium phosphate coatings, Mater. Chem. Phys. 141 (2013) 842-849.
DOI: 10.1016/j.matchemphys.2013.06.013
Google Scholar
[6]
N. C. Koseoglu, A. Buyukaksoy, A. Y. Oral, M. H. Aslan, Hydroxyapatite/Bioactive Glass Films Produced by a Sol–Gel Method: In Vitro Behavior, Adv. Eng. Mater. 11 (2009) B194-B199.
DOI: 10.1002/adem.200900034
Google Scholar
[7]
J. Faure, R. Drevet, N. Ben Jaber, S. Potiron, C. Demangel, D. retraint, H. Benhayoune, Electrophoretic Deposition of Hydroxyapatite and 58S Bioactive Glass coatings on the Ti6Al4V alloy subjected to Surface Mechanical Attrition Treatment, Key Eng. Mat. 654 (2015).
DOI: 10.4028/www.scientific.net/kem.654.149
Google Scholar
[8]
N. Eliaz, M. Eliyahu, Electrochemical processes of nucleation and growth of hydroxyapatite on titanium supported by real-time electrochemical atomic force microscopy. J Biomed Mater Res A. 80(3) (2007) 621-34.
DOI: 10.1002/jbm.a.30944
Google Scholar
[9]
H. Benhayoune, P. Laquerriere, E. Jallot, A. Perchet, L. Kilian, G. Balossier, J. L. Bubendorff, G. D. Sockalingum, Micrometer Level Structural and Chemical Evaluation of Electrodeposited Calcium Phosphate Coatings on TA6V Substrate by STEM-EDXS, J. Mater. Sci. Mater. Med. 13 (2002).
DOI: 10.1023/a:1020348807133
Google Scholar
[10]
H. Benhayoune, R. Drevet, J. Faure, S. Potiron, T. Gloriant, H. Oudadesse and D. Laurent-Maquin, Elaboration of Monophasic and Biphasic Calcium Phosphate Coatings on Ti6Al4V Substrate by Pulsed Electrodeposition Current, Adv. Eng. Mater. 12 (2010).
DOI: 10.1002/adem.200980058
Google Scholar
[11]
N. Ben Jaber, R. Drevet, J. Faure, C. Demangel, S. Potiron, A. Tara, A. Ben Cheikh Larbi H. Benhayoune, A New Process for the Thermal Treatment of Calcium Phosphate Coatings Electrodeposited on Ti6Al4V Substrate Adv. Eng. Mater. 17 (2015).
DOI: 10.1002/adem.201400572
Google Scholar
[12]
NF S94-066, Quantitative determination of phosphate calcium Ca/P ratio (1998).
Google Scholar
[13]
M. Yashima, A. Sakai, T. Kamiyama, A. Hoshikawa, Crystal structure analysis of b-tricalcium phosphate Ca3(PO4)2 by neutron powder diffraction, J. Solid Chem. 175 (2003) 272-277.
DOI: 10.1016/s0022-4596(03)00279-2
Google Scholar
[14]
J. Zhao, J. Zhao, J. Chen, X. Wang, Z. Han, Y. Li, Rietveld refinement of hydroxyapatite, tricalcium phosphate and biphasic materials prepared by solution combustion method, Ceram. Inter. 40 (2014) 3379-3388.
DOI: 10.1016/j.ceramint.2013.09.094
Google Scholar