[1]
T. E Orr, P.A. Villars, S.L. Mitchell, H.P. Hsu, M. Spector, Compressive properties of cancellous bone defects in a rabbit model treated with particles of natural bone mineral and synthetic hydroxyapatite, Biomaterials. 22 (2001) 1953–(1959).
DOI: 10.1016/s0142-9612(00)00370-7
Google Scholar
[2]
O. Kilian, S. Wenisch, S. Karnati, E. Baumgart-Vogt, A. Hild, R. Fuhrmann, T. Jonuleit, E. Dingeldein, R. Schnettler, R.P. Franke, Observations on the microvasculature of bone defects filled with biodegradable nanoparticulate hydroxyapatite, Biomaterials. 29 (2008).
DOI: 10.1016/j.biomaterials.2008.05.003
Google Scholar
[3]
V. Alta, W.H. Cheung, S.K.H. Chow, U. Thormann, E.N.M. Cheung, K.S. Lips, R. Schnettlera, K.S. Leung, Bone formation and degradation behavior of nanocrystalline hydroxyapatite with or without collagen-type 1 in osteoporotic bone defects – an experimental study in osteoporotic goats, Injury. 47 (2016).
DOI: 10.1016/s0020-1383(16)47010-5
Google Scholar
[4]
M. Roy, A. Bandyopadhyay, S. Bose, Induction plasma sprayed nano hydroxyapatite coatings on titanium for orthopaedic and dental implants, Surface & Coatings Technology. 205 (2011) 2785–2792.
DOI: 10.1016/j.surfcoat.2010.10.042
Google Scholar
[5]
N. Martinez-Carranza, H.E. Berg, A.S. Lagerstedt, H. Nurmi-Sandh, P. Schupbach, L. Ryd, Fixation of a double-coated titanium-hydroxyapatite focal knee resurfacing implant: A 12-month study in sheep, Osteoarthritis and Cartilage. 22 (2014) 836–844.
DOI: 10.1016/j.joca.2014.03.019
Google Scholar
[6]
E. Mohseni, E. Zalnezhad, A.R. Bushroa, Comparative investigation on the adhesion of hydroxyapatite coating on Ti–6Al–4V implant: A review paper, International Journal of Adhesion & Adhesives. 48 (2014) 238–257.
DOI: 10.1016/j.ijadhadh.2013.09.030
Google Scholar
[7]
C. Prati, F. Cervellati, V. Sanasi, L. Montebugnoli, Treatment of cervical dentin hypersensitivity with resin adhesives: 4 week evaluation, American Journal of Dentistry. 14 (2001) 378–382.
Google Scholar
[8]
A. Baysan, E. Lynch, Treatment of cervical sensitivity with a root sealant, American Journal of Dentistry. 16 (2003) 135–138.
Google Scholar
[9]
K. Hashimoto, K. Naganuma, Y. Yamashita, T. Ikebe, S. Ozeki, A case of mucositis due to the allergy to self-curing resin, Oral Science International. 11 (2014) 37–39.
DOI: 10.1016/s1348-8643(13)00027-x
Google Scholar
[10]
R. Akatsuka, H. Ishihata, M. Noji, K. Matsumura, T. Kuriyagawa, K. Sasaki, Effect of hydroxyapatite film formed by powder jet deposition on dentin permeability, European Journal of Oral Sciences. 120 (2012) 558–562.
DOI: 10.1111/j.1600-0722.2012.01003.x
Google Scholar
[11]
S. Hontsu, K. Yoshikawa, N. Kato, T. Hayami, H. Nishikawa, M. Kusunoki, K. Yamamoto, Restoration and conservation of dental enamel using a flexible apatite sheet, Journal of Australian Ceramic Society. 47 (2011) 11–13.
DOI: 10.4028/www.scientific.net/kem.493-494.615
Google Scholar
[12]
S. Hontsu, N. Kato, E. Yamamoto, H. Nishikawa, M. Kusunoki, T. Hayami, K. Yoshikawa, Regeneration of tooth enamel by flexible hydroxyapatite sheet, Key Engineering Materials. 493-494 (2012) 615–619.
DOI: 10.4028/www.scientific.net/kem.493-494.615
Google Scholar
[13]
S. Hontsu, K. Yoshikawa, Ultra-thin hydroxyapatite sheets for dental applications, Hydroxyapatite (HAp) for Biomedical Applications, 1st Edition, Edited by M. Mucalo, Woodhead Publishing. (2015) 129–141.
DOI: 10.1016/b978-1-78242-033-0.00006-7
Google Scholar
[14]
E. Yamamoto, N. Kato, A. Isai, H. Nishikawa, Y. Hashimoto, K. Yoshikawa, S. Hontsu, A novel treatment for dentine cavities with intraoral laser ablation method using an Er: YAG laser, Key Engineering Materials. 631 (2015) 262–266.
DOI: 10.4028/www.scientific.net/kem.631.262
Google Scholar
[15]
K. Suchanek, A. Bartkowiak, A. Gdowik, M. Perzanowski, S. Kac, B. Szaraniec, M. Suchanek, M. Marszalek, Crystalline hydroxyapatite coatings synthesized under hydrothermal conditions on modified titanium substrates, Materials Science and Engineering C. 51 (2015).
DOI: 10.1016/j.msec.2015.02.029
Google Scholar
[16]
S. B Mehta, S. Banerji, B.J. Millar, J.M. Suarez-Feito, Current concepts on the management of tooth wear: Assessment, treatment planning and strategies for the prevention and the passive management of tooth wear, British Dental Journal. 212 (2012).
DOI: 10.1038/sj.bdj.2011.1099
Google Scholar
[17]
W.H. Mormann, B. Stawarczyk, A. Ender, B. Sener, T. Attin, A. Mehl, Wear characteristics of current aesthetic dental restorative CAD/CAM materials: Two-body wear, gloss retention, roughness and Martens hardness, Journal of the Mechanical Behavior of Biomedical Materials. 20 (2013).
DOI: 10.1016/j.jmbbm.2013.01.003
Google Scholar
[18]
X. Zhao, J. Pan, H.S. Malmstrom, Y.F. Ren, Protective effects of resin sealant and flowable composite coatings against erosive and abrasive wear of dental hard tissues, Journal of Dentistry. 49 (2016) 68–74.
DOI: 10.1016/j.jdent.2016.01.013
Google Scholar
[19]
J.C.M. Souza, A.C. Bentes, K. Reis, S. Gavinha, M. Buciumeanu, B. Henriques, F.S. Silva, J.R. Gomes, Abrasive and sliding wear of resin composites for dental restorations, Tribology International. 102 (2016) 154–160.
DOI: 10.1016/j.triboint.2016.05.035
Google Scholar
[20]
F. Mullan, S. Paraskar, D.W. Bartlett, R.C. Olley, Effects of tooth-brushing force with a desensitising dentifrice on dentine tubule patency and surface roughness, Journal of Dentistry. 60 (2017) 50–55.
DOI: 10.1016/j.jdent.2017.02.015
Google Scholar
[21]
D. Franzo, C.J. Philpotts, T.F. Cox, A. Joiner, The effect of toothpaste concentration on enamel and dentine wear in vitro, Journal of Dentistry. 38 (2010) 974–979.
DOI: 10.1016/j.jdent.2010.08.010
Google Scholar
[22]
M. Popa, F. Peditto, L. Guy, A.M. Sfarghiu, Y. Berthier, S. Descartes, A tribological approach to understand the behavior of oral-care silica during tooth brushing, Biotribology. 6 (2016) 1–11.
DOI: 10.1016/j.biotri.2016.03.001
Google Scholar
[23]
T. Furumoto, T. Ueda, A. Kasai, A. Hosokawa, Surface temperature during cavity preparation on human tooth by Er: YAG laser irradiation, Manufacturing Technology. 60 (2011) 555–558.
DOI: 10.1016/j.cirp.2011.03.065
Google Scholar
[24]
W.J. Dunn, J.T. Davis, A.C. Bush, Shear bond strength and SEM evaluation of composite bonded to Er: YAG laser-prepared dentin and enamel, Dental Materials. 21 (2005) 616–624.
DOI: 10.1016/j.dental.2004.11.003
Google Scholar
[25]
C. Camerlingo, M. Lepore, G. M. Gaeta, R. Riccio, C. Riccio, A. DeRosa, M. DeRosa, Er: YAG laser treatments on dentin surface: Micro-Raman spectroscopy and SEM analysis, Journal of Dentistry. 32 (2004) 399–405.
DOI: 10.1364/bio.2004.thf10
Google Scholar
[26]
M. Mir, J. Meister, R. Franzen, S.S. Sabounchi, F. Lampert, N. Gutknecht, Influence of water-layer thickness on Er: YAG laser ablation of enamel of bovine anterior teeth, Lasers in Medical Science. 23 (2008) 451–457.
DOI: 10.1007/s10103-007-0508-0
Google Scholar
[27]
S.R. Visuri, J.T. Walsh, H.A. Wigdor, Erbium laser ablation of dental hard tissue: Effects of water cooling, Lasers in Surgery and Medicine. 18 (1996) 294–300.
DOI: 10.1002/(sici)1096-9101(1996)18:3<294::aid-lsm11>3.0.co;2-6
Google Scholar
[28]
S.M. Park, T. Ikegami, K. Ebihara, Effects of substrate temperature on the properties of Ga-doped ZnO by pulsed laser deposition, Thin Solid Films. 513 (2006) 90–94.
DOI: 10.1016/j.tsf.2006.01.051
Google Scholar
[29]
P. Hu, B. Li, L. Feng, J. Wu, H. Jiang, H. Yang, X. Xiao, Effects of substrate temperature on the properties of CdTe thin films deposited by pulsed laser deposition, Surface and Coatings Technology. 213 (2012) 84–89.
DOI: 10.1016/j.surfcoat.2012.10.022
Google Scholar