[1]
A. Kodaira, T. Nonami, H. Hase, Synthesis of micro-spherical porous hydroxyapatite particles by wet method, J. Aust. Ceram. Soc. 47 (2011) 1-5.
Google Scholar
[2]
T. Matsunaga, R. Tomoda, T. Nakajima, H. Wake, Photoelectrochemical Sterilization of Microbial Cells by Semiconductor Powders, FEMS Microbiol. Lett. 29 (1985) 211-214.
DOI: 10.1111/j.1574-6968.1985.tb00864.x
Google Scholar
[3]
T. Kasuga, H. Kondo, M. Nogami, Apatite Formation on TiO2 in simulated Body Fluid, J. Cryst. Growth. 235 (2002) 235-240.
DOI: 10.1016/s0022-0248(01)01782-1
Google Scholar
[4]
X. Zhao, X Liu, C. Ding, P. K. Chu, Effects of plasma treatment on bioactivity of TiO2 coatings, Surf. Coat. Tech. 201 (2007) 6878-6881.
DOI: 10.1016/j.surfcoat.2006.09.064
Google Scholar
[5]
K. Kuroda, H. Shidu, R. Ichino, M. Okido, Formation of Titania / Hydroxyapatite Composite Films by Pulse Electrolysis, Mater. Trans. 48(3) (2007) 322-327.
DOI: 10.2320/matertrans.48.322
Google Scholar
[6]
N. Yoshijima, K. Tamazawa, T. Nonami, A. Kodaira, Electrochemical properties of titanium oxide photocatalysts particles supported on spherical porous hydroxyapatite, Presented at the Joint Symposium of the Surface Science Society of Japan and the Vacuum Society of Japan, Aichi, November 2016, Abstr. No. 2PB11S.
DOI: 10.14723/tmrsj.42.167
Google Scholar
[7]
D. A. Puleo, A. Nanci, Understanding and controlling the bone implant interface, Biomaterials. 20 (1999) 2311-2321.
DOI: 10.1016/s0142-9612(99)00160-x
Google Scholar
[8]
M. Nakamura, Y. Sekijima, S. Nakamura, T. Kobayashi, K. Niwa, K. Yamashita, Role of blood coagulation components as intermediators of high osteoconductivity of electrically polarized hydroxyapatite, J. Biomed. Mater. Res. A. 79 (2006) 627-634.
DOI: 10.1002/jbm.a.30827
Google Scholar
[9]
C. M. Alves, R. L. Reis, J. A. Hunt, The Competitive Adsorption of Human Proteins onto Natural-Based Biomaterials, J. R. Soc. Interface. 7 (2010) 1367-1377.
DOI: 10.1098/rsif.2010.0022
Google Scholar
[10]
S. R. Sousa, M. Lamghari, P. Sampaio, P. Moradas-Ferreira, M. A. Barbosa, Osteoblast adhesion and morphology on TiO2 depends on the compectitive preadsorption of albumin and fibronectin, J. Biomed. Mater. Res. A. 84 (2008) 281-290.
DOI: 10.1002/jbm.a.31201
Google Scholar
[11]
T. Kawasaki, Theory of chromatography of rigid molecules on hydroxyapatite columns with small loads. IV. Estimation of the adsorption energy of nucleoside polyphosphates, J. Chromatogr. A. 151 (1978) 95-112.
DOI: 10.1016/s0021-9673(00)85374-1
Google Scholar
[12]
T. Kawasaki, Theory of chromatography on hydrxyapatite columns with small loads, J. Chromatogr. A. 157 (1978) 7-42.
Google Scholar
[13]
S. Jalota, S. B. Bhaduri, A. C. Tas, Effect of carbonate content and butter type on calcium phosphate formation in SBF solutions, J Mater Sci: Mater. Med. 17 (2006) 697-707.
DOI: 10.1007/s10856-006-9680-1
Google Scholar
[14]
I.B. Leonora, E.T. Barana, M. Kawashita, R.L. Reisa, T. Kokubo, T. Nakamura, Growth of a bonelike apatite on chitosan microparticles after a calcium silicate treatment, Acta Biomater. 4 (2008) 1349-1359.
DOI: 10.1016/j.actbio.2008.03.003
Google Scholar
[15]
X.V. Bui, V.B. Nguyen, T.T.H. Le, Q.M. Do, In vitro, Apatite Formation on the Surface of Bioactive Glass, Glass. Phys. + Chem. (2013) 39- 64.
DOI: 10.1134/s1087659613010033
Google Scholar