[1]
Cordeiro PG, Santamaria E. A classification system and algorithm for reconstruction of maxillectomy and midfacial defects. Plastic and reconstructive surgery. 105(7) (2000) 2331-46.
DOI: 10.1097/00006534-200006000-00004
Google Scholar
[2]
Werle AH, Tsue TT, Toby EB, Girod DA. Osteocutaneous radial forearm free flap: its use without significant donor site morbidity. Otolaryngology-head and neck surgery: official journal of American Academy of Otolaryngology-Head and Neck Surgery. 123(6) (2000).
DOI: 10.1067/mhn.2000.110865
Google Scholar
[3]
Chanchareonsook N; Junker R; Jongpaiboonkit L et al. Tissue- Engineered Mandibular Bone Reconstruction for Continuity Defects: A Systematic Approach to the Literature. Tissue Engineering Part B-Reviews 20(2) (2014) 147-162.
DOI: 10.1089/ten.teb.2013.0131
Google Scholar
[4]
Payne K.; Balasundaram, I; Deb, S; et al. Tissue engineering technology and its possible applications in oral and maxillofacial surgery. British Journal Of Oral & Maxillofacial Surgery 52(1) (2014) 7-15.
DOI: 10.1016/j.bjoms.2013.03.005
Google Scholar
[5]
Ceccaldi C, and Bushkalova R, Cussac Dl, Duployer B et al, Sallerin B and Girod Fullana Sophie. Elaboration and evaluation of alginate foam scaffolds for soft tissue engineering. International Journal of Pharmaceutics 524 (1–2) (2017)433-442.
DOI: 10.1016/j.ijpharm.2017.02.060
Google Scholar
[6]
Munarin, F.; Tanzi, M. C.; Petrini, P. Advances in biomedical applications of pectin gels. International Journal Of Biological Macromolecules 55 (2013) 307-307.
DOI: 10.1016/j.ijbiomac.2013.01.008
Google Scholar
[7]
Munarin, F.; Petrini, P.; Gentilini, R.; et al. Micro- and nano-hydroxyapatite as active reinforcement for soft biocomposites. International Journal Of Biological Macromolecules 72 (2015) 199-209.
DOI: 10.1016/j.ijbiomac.2014.07.050
Google Scholar
[8]
S. Girod Fullana, H. Ternet, M. Freche, J.L. Lacout, F. Rodriguez. Controlled release properties and final macroporosity of a pectin microspheres - calcium phosphate composite bone cement. Acta Biomaterialia 6 (2010) 2294-2300.
DOI: 10.1016/j.actbio.2009.11.019
Google Scholar
[9]
Rey, C; Combes, C; Drouet, C; et al. Surface properties of biomimetic nanocrystalline apatites; applications in biomaterials. Progress In Crystal Growth And Characterization Of Materials 60(3-4) (2014) 63-73.
DOI: 10.1016/j.pcrysgrow.2014.09.005
Google Scholar
[10]
J. Gomez-Morales, M. Lafisco, J.M. Delgado-Lopez, S. Sarda, C. Drouet. Progress on the preparation of nanocrystalline apatites and surface characterization: Overview of fundamental and applied aspects. Progress in Crystal Growth and Characterization of Materials 59 (2013).
DOI: 10.1016/j.pcrysgrow.2012.11.001
Google Scholar
[11]
A.G. Mikos, G. Sarakinos, M.D. Lyman, D.E. Ingber, J.P. Vacanti, R. Langer. Prevascularization of porous biodegradable polymers. Biotechnol. Bioeng. 42 (1993) 716-723.
DOI: 10.1002/bit.260420606
Google Scholar