Fabrication of Sodium-Substituted Hydroxyapatite Ceramics via Ultrasonic Spray-Pyrolysis Route and their Material Properties

Article Preview

Abstract:

Biological apatite presented in bone and teeth of mammals contains various ions in trace levels. Substitution of the ions into hydroxyapatite (HAp) can ensure higher bioactivity compared with stoichiometric HAp. It is known that sodium (Na) has been detected as an abundant trace element next to the presence of calcium and phosphorous in natural bone. The aim of this study is to examine the effect of substitution of Na on material properties of the HAp ceramics. Therefore, we have synthesized the sodium-substituted hydroxyapatite (NaAp) ceramics without carbonate ions by an ultrasonic spray-pyrolysis (USSP) technique. The USSP technique can obtain the desired powder by directly heating droplets of a sample solution with the target composition. Both NaAp powders with (Ca+Na)/P ratios of 1.67, 1.72 and 1.77 and their ceramics did not contain carbonate ions, and HAp single phase was maintained even after sintering. It was revealed that the substitution of Na enhanced the sinterability of HAp ceramics and improved the apatite-forming ability.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

166-171

Citation:

Online since:

November 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. Aoki, Medical Applications of Hydroxyapatite, Ishiyaku Euro America, Tokyo, 1994, p.174.

Google Scholar

[2] S. Kannan, A. Rebelo, J.M.F. Ferreira, Novel synthesis and structural characterization of fluorine and chlorine co-substituted hydroxyapatites, J. Inorg. Biochem. 100 (2006) 1692–1697.

DOI: 10.1016/j.jinorgbio.2006.06.005

Google Scholar

[3] G.W. Chinthaka Silva, L. Ma, O. Hemmers, D. Lindle, Micro-structural characterization of precipitation-synthesized fluorapatite nano-material by transmission electron microscopy using different sample preparation techniques, Micron 39 (2008).

DOI: 10.1016/j.micron.2007.09.004

Google Scholar

[4] S. R. Kim, J. H. Lee, Y. T. Kim, D. H. Riu, S. J. Jung, Y. J. Lee, S. C. Chung, Y. H. Kim, Synthesis of Si, Mg substituted hydroxyapatites and their sintering behaviors, Biomaterials 24 (2003) 1389-1398.

DOI: 10.1016/s0142-9612(02)00523-9

Google Scholar

[5] X. L. Tang, X. F. Xiao, R. F. Liu, Structural characterization of silicon-substituted hydroxyapatite synthesized by a hydrothermal method, Mater. Lett. 59 (2005) 3841-3846.

DOI: 10.1016/j.matlet.2005.06.060

Google Scholar

[6] R. Itoh, Y. Suyama, Sodium excretion in relation to calcium and hydroxyproline excretion in a healthy Japanese population, Am. J. Clin. Nutr. 63 (1996) 735–740.

DOI: 10.1093/ajcn/63.5.735

Google Scholar

[7] F. Ginty, A. Flynn, K.D. Cashman, The effect of dietary sodium intake on biochemical markers of bone metabolism in young women, Br. J. Nutr. 79 (1998) 343–350.

DOI: 10.1079/bjn19980058

Google Scholar

[8] M. Šupová, Substituted hydroxyapatites for biomedical applications: A review, Ceram. Int. 41 (2015) 9203- 9231.

DOI: 10.1016/j.ceramint.2015.03.316

Google Scholar

[9] E. F. Hafed, M. S. Jean, B. S. Abdelhamid, J. Mohamed, Sodium and carbonate distribution in substituted calcium hydroxyapatite, Solid State Sci. 2 (2000) 577-586.

Google Scholar

[10] S. M. Barinov, I. V. Fadeeva, D. Ferro, J. V. Rau, S. N. Cesaro, V. S. Komlev, A. S. Fomin, Stabilization of carbonate hydroxyapatite by isomorphic substitutions of sodium for calcium, Russ. J. Inorg. Chem. 53 (2008) 164-168.

DOI: 10.1134/s0036023608020022

Google Scholar

[11] J. Li, Y. Li, L. Zhang, Y. Zuo, Composition of calcium deficient Na-containing carbonate hydroxyapatite modeified with Cu(II) and Zn (II) ions, Appl. Surf. Sci. 254 (2008) 2844-2850.

DOI: 10.1016/j.apsusc.2007.10.030

Google Scholar

[12] N. Y. Mostafa, H. M. Hassan, O. H. Abd Elkader, Preparation and characterization of Na+, SiO44- and CO32- co-substituted hydroxyapatite, J. Am. Ceram. Soc. 94 (2011) 1584-1590.

DOI: 10.1111/j.1551-2916.2010.04282.x

Google Scholar

[13] G. L. Messing, S. -C. Zhang, G. V. Jayanthi, Ceramic powder synthesis by spray pyrolysis, J. Am. Ceram. Soc. 76 (1993) 2707–2726.

DOI: 10.1111/j.1151-2916.1993.tb04007.x

Google Scholar

[14] M. Aizawa, K. Itatani, I. Okada, Synthesis of various apatites and porous coating of biocompatible calcium-phosphate films via spray-pyrolysis technique, Phosphorus Res. Bull. 20 (2006) 61-78.

DOI: 10.3363/prb.20.61

Google Scholar

[15] M. Aizawa, T. Hanazawa, K. Itatani, F. S. Howell, A. Kishioka, Characterization of hydroxyapatite powders prepared by ultrasonic spray-pyrolysis technique, J. Mater. Sci. 34 (1999) 2865-2873.

DOI: 10.3363/prb1992.6.0_217

Google Scholar

[16] T. Kokubo, H. Kushitani, S. Sakka, T. Kitsugi, T. Yamamuro, Solutions able to reproduce in vivo surface-structure changes in bioactive glass-ceramics A-W, J. Biomed. Mater. Res. 24 (1990) 721–734.

DOI: 10.1002/jbm.820240607

Google Scholar

[17] J. S. Cho, S. -H. Um, D. S. Yoo, Y. -C. Chung, S. H. Chung, J. -C. Lee, S. -H. Rhee, Enhanced osteoconductivity of sodium-substituted hydroxyapatite by system insability, J. Biomed. Mater. Res. B Appl. Biomater. 102 (2014) 1046-1062.

DOI: 10.1002/jbm.b.33087

Google Scholar

[18] H. El Feki, A. Ben Salah, A. Daoud, A. Lamure, C. Lacabanne, Studies by thermally stimulated current (TSC) of hydroxyl and fluoro-carbonated apatites containing sodium ions, J. Phys. Condens. Mater. 12 (2000) 8331– 8343.

DOI: 10.1088/0953-8984/12/38/309

Google Scholar

[19] S. Kannan, J.M.G. Ventura, A.F. Lemos, A. Barba, J.M.F. Ferreira, Effect of sodium addition on the preparation of hydroxyapatites and biphasic ceramics, Ceram. Int. 34 (2008) 7–13.

DOI: 10.1016/j.ceramint.2006.07.007

Google Scholar

[20] W. Suchanek, M. Yashima, M Kakihara, M. Yoshimura. Hydroxyapatite ceramics with selected sintering additives, Biomaterials 18 (1997) 923-933.

DOI: 10.1016/s0142-9612(97)00019-7

Google Scholar