[1]
N. Lushnikova, L. Dvorkin, Sustainability of gypsum products as a construction material, Sustainability of construction material. (2016) 643-681.
DOI: 10.1016/b978-0-08-100370-1.00025-1
Google Scholar
[2]
B. Guan, L. Yang, H. Fu, B. Kong, T. Li, L. Yang, α-calcium sulfate hemihydrate preparation from FGD gypsum in recycling mixed salt solutions, Chem. Eng. J. 174 (2011) 296–303.
DOI: 10.1016/j.cej.2011.09.033
Google Scholar
[3]
C. Liu, Q. Zhao, Y. Wang, P. Shi, M. Jiang, Hydrothermal synthesis of calcium sulfate whisker from flue gas desulfurization gypsum, Chinese J. Chem. Eng. 24 (2016) 1552–1560.
DOI: 10.1016/j.cjche.2016.04.024
Google Scholar
[4]
W. Xiaoqin, T. Shitang, G. Baohong, W. Zhongbiao, Transformation of flue-gas-desulfurization gypsum to α-hemihydrated gypsum in salt solution at atmospheric pressure, Chinese J. Chem. Eng. 19 (2011) 349-355.
DOI: 10.1016/s1004-9541(11)60175-4
Google Scholar
[5]
B. Guan, B. Kong, H. Fu, J. Yu, G. Jiang, L. Yang, Pilot scale preparation of α-calcium sulfate hemihydrate from FGD gypsum in Ca-K-Mg aqueous solution under atmospheric pressure, Fuel. 98 (2012) 48-54.
DOI: 10.1016/j.fuel.2012.03.032
Google Scholar
[6]
N.M.P.D. Silva, Y. Rong, F. Espitalier, F. Baillon, A. Gaunand, Solvothermal recrystallization of α-calcium sulface hemihydrate: Batch reactor experiments and kinetic modelling, J. Cryst. Growth. (2017).
DOI: 10.1016/j.jcrysgro.2017.02.010
Google Scholar
[7]
P.T. rek, J. Drchalova, J. K. sko, P. R. kova, R. erny, Flue gas desulfurization gypsum: Study of basic mechanical, hydric and thermal properties, Constr. Build. Mater. 21 (2007) 1500–1509.
DOI: 10.1016/j.conbuildmat.2006.05.009
Google Scholar
[8]
H. Sun, D. Tan, T. Peng, Y. Liang, Preparation of calcium sulfate whisker by atmospheric acidification method from flue gas desulfurization gypsum, Procdia Environmental Sciences. 31 (2016) 621-626.
DOI: 10.1016/j.proenv.2016.02.112
Google Scholar
[9]
M. Singh, Treating waste phosphogypsum for cement and plaster manufacture, Cement Concrete Res. 32 (2002) 1033 – 1038.
DOI: 10.1016/s0008-8846(02)00723-8
Google Scholar
[10]
Q.L. Lu, H.J.H. Brouwers, Development of a self-compacting gypsum-based lightweight composite, Cement Concrete comp. 34 (2012) 1033-1043.
DOI: 10.1016/j.cemconcomp.2012.05.004
Google Scholar
[11]
A.J. Rivero, A.D.G. Baez, J.G. Navarro, New composite gypsum plaster – ground waste rubber coming from pipe foam insulation, Constr. Build. Mater. 55 (2014) 146-152.
DOI: 10.1016/j.conbuildmat.2014.01.027
Google Scholar
[12]
A. Vimmrova, M. Keppert, L. Svoboda, R. Cerny, Lightweight gypsum composites: Design strategies for multi-functionality, Cement Concrete comp. 33 (2011) 84-89.
DOI: 10.1016/j.cemconcomp.2010.09.011
Google Scholar
[13]
A. Telesca, M. Marroccoli, D. Calabrese, G.L. Valenti, F. Montagnaro, Flue gas desulfurization gypsum and coal fly ash as basic components of prefabricated building materials, Waste Manage. 33 (2013) 628-633.
DOI: 10.1016/j.wasman.2012.10.022
Google Scholar
[14]
J. Zhou, C. Liu, Z. Shu, D. Yu, Q. Zhang, T. Li, Q. Xue, Preparation of specific gypsum with advanced hardness and bending strength by a novel in-situ loading-hydration process, Cement Concrete Res. 67 (2015) 179-183.
DOI: 10.1016/j.cemconres.2014.09.004
Google Scholar