[1]
M. Haubold, L. Wulf, M.F. Zaeh: Validation of a spatter detection algorithm for remote laser welding applications, J. Laser Appl. 29 (2017) 22011.
DOI: 10.2351/1.4982064
Google Scholar
[2]
L. Murr: A Review of FSW Research on Dissimilar Metal and Alloy Systems, J. Materi. Eng. Perform. 19 (2010) 1071–1089.
DOI: 10.1007/s11665-010-9598-0
Google Scholar
[3]
M. Mubiayi, E. Akinlabi: Friction Stir Welding of Dissimilar Materials between Aluminium Alloys and Copper – An Overview, Proc. World Congr. Eng. 2013 Vol. III (3), World Congr. Eng. 2013, London, 3.–5. July, (2013).
Google Scholar
[4]
K. Mehta, V. Badheka: A Review on Dissimilar Friction Stir Welding of Copper to Aluminum. Process, Properties, and Variants, Materi. Manuf. Proc. 31 (2015) 233–254.
DOI: 10.1080/10426914.2015.1025971
Google Scholar
[5]
I. Galvão, A. Loureiro, D. Rodrigues: Critical review on friction stir welding of aluminium to copper, Sci. Tech. Weld. Join. 21 (2016) 523–546.
DOI: 10.1080/13621718.2015.1118813
Google Scholar
[6]
E. Akinlabi, D. Madyira, S. Akinlabi: Effect of Heat Input on the Electrical Resistivity of Dissimilar Friction Stir Welded Joints of Aluminium and Copper, AFRICON, 2011, Livingstone, Zambia, 13.–15. September, (2011).
DOI: 10.1109/afrcon.2011.6071973
Google Scholar
[7]
A. Abdollah-Zadeh, T. Saeid, B. Sazgari: Microstructural and mechanical properties of friction stir welded aluminum/copper lap joints, J. All. Comp. 460 (2008) 535–538.
DOI: 10.1016/j.jallcom.2007.06.009
Google Scholar
[8]
H. Bisadi, A. Tavakoli, M. Tour Sangsaraki, K. Tour Sangsaraki: The influences of rotational and welding speeds on microstructures and mechanical properties of friction stir welded Al5083 and commercially pure copper sheets lap joints, Materi. & Des. 43 (2013).
DOI: 10.1016/j.matdes.2012.06.029
Google Scholar
[9]
P. Xue, B. Xiao, D. Ni, Z. Ma: Enhanced mechanical properties of friction stir welded dissimilar Al–Cu joint by intermetallic compounds, Materi. Sci. Eng.: A 527 (2010) 5723–5727.
DOI: 10.1016/j.msea.2010.05.061
Google Scholar
[10]
P. Xue, B. Xiao, Z. Ma: Effect of Interfacial Microstructure Evolution on Mechanical Properties and Fracture Behavior of Friction Stir-Welded Al-Cu Joints, Met. Mat. Trans. A 46 (2015) 3091–3103.
DOI: 10.1007/s11661-015-2909-1
Google Scholar
[11]
C. Tan, Z. Jiang, L. Li, Y. Chen, X. Chen: Microstructural evolution and mechanical properties of dissimilar Al-Cu joints produced by friction stir welding, Materi. & Des. 51 (2013) 466–473.
DOI: 10.1016/j.matdes.2013.04.056
Google Scholar
[12]
M. Muthu, V. Jayabalan: Tool travel speed effects on the microstructure of friction stir welded aluminum-copper joints, J. Materi. Proc. Tech. 217 (2015) 105–113.
DOI: 10.1016/j.jmatprotec.2014.11.007
Google Scholar
[13]
R. Marstatt, M. Krutzlinger, J. Luderschmid, M.F. Zaeh, F. Haider: Formation of a diffusion-based intermetallic interface layer in friction stir welded dissimilar Al-Cu lap joints, IOP Conf. Ser.: Mater. Sci. Eng. 181 (2017) 181 12002.
DOI: 10.1088/1757-899x/181/1/012002
Google Scholar
[14]
C. Genevois, M. Girard, B. Huneau, X. Sauvage, G. Racineux: Interfacial Reaction during Friction Stir Welding of Al and Cu, Met. Mat. Trans. A 42 (2011) 2290–2295.
DOI: 10.1007/s11661-011-0660-9
Google Scholar
[15]
I. Galvão, A. Loureiro, D. Verdera, D. Gesto, D. Rodrigues: Influence of Tool Offsetting on the Structure and Morphology of Dissimilar Aluminum to Copper Friction-Stir Welds, Met. Mat. Trans. A 43 (2012) 5096–5105.
DOI: 10.1007/s11661-012-1351-x
Google Scholar
[16]
P.K. Sahu, S. Pal, S.K. Pal, R. Jain: Influence of plate position, tool offset and tool rotational speed on mechanical properties and microstructures of dissimilar Al/Cu friction stir welding joints, J. Mat. Proc. Tech. 235 (2016) 55–67.
DOI: 10.1016/j.jmatprotec.2016.04.014
Google Scholar
[17]
D. Mayfield, C. Sorensen: An improved temperature control algorithm for friction stir processing, 8th International Friction Stir Welding Symposium, TWI, Timmendorfer Strand, Germany, 18.–20. May, (2010).
Google Scholar
[18]
H. Uzun, C. Dalle Donne, A. Argagnotto, T. Ghidini, C. Gambaro: Friction stir welding of dissimilar Al 6013-T4 To X5CrNi18-10 stainless steel, Mat. & Des. 26 (2005) 41–46.
DOI: 10.1016/j.matdes.2004.04.002
Google Scholar
[19]
A. Fehrenbacher, C. Smith, N. Duffie, N. Ferrier, F. Pfefferkorn, M. Zinn: Combined temperature and force control for robotic friction stir welding, J. Manuf. Sci. Eng., 136 (2014) 1–27.
DOI: 10.1115/1.4025912
Google Scholar
[20]
L. Cederqvist, O. Garpinger, T. Hägglund, A. Robertsson: Cascade control of the friction stir welding process to seal canisters for spent nuclear fuel, Contr. Eng. Prac. 20 (2012) 35–48.
DOI: 10.1016/j.conengprac.2011.08.009
Google Scholar
[21]
K. Ross, C. Sorensen: Investigation of methods to control friction stir weld power with spindle speed changes, Proc. Fric. St. Weld. Proc. VI, San Diego, USA, (2011).
DOI: 10.1002/9781118062302.ch40
Google Scholar
[22]
J. de Backer, G. Bolmsjö, A.-K. Christiansson: Temperature control of robotic friction stir welding using the thermoelectric effect, Int. J. Adv. Manuf. Tech. 70 (2014) 375–383.
DOI: 10.1007/s00170-013-5279-0
Google Scholar
[23]
A. Bachmann, J. Gamper, M. Krutzlinger, A. Zens, M.F. Zaeh: Adaptive model-based temperature control in friction stir welding, Int. J. Adv. Manuf. Tech. 93 (2017) 1157–1171.
DOI: 10.1007/s00170-017-0594-5
Google Scholar
[24]
T. Davis, Y. Shin, B. Yao: Observer-based adaptive robust control of friction stir welding axial force, IEEE/ASME Trans. Mechatr. 16 (2011) 1032–1039.
DOI: 10.1109/tmech.2010.2071417
Google Scholar
[25]
B. Taysom, C. Sorensen, J. Hedengren: A comparison of model predictive control and PID temperature control in friction stir welding, J. Manuf. Proc. 29 (2017) 232–241.
DOI: 10.1016/j.jmapro.2017.07.015
Google Scholar
[26]
M. Krutzlinger, R. Marstatt, S. Suenger, J. Luderschmid, M.F. Zaeh, F. Haider: Formation of Joining Mechanisms in Friction Stir Welded Dissimilar Al-Ti Lap Joints, Adv. Mat. Res. 966-967 (2014) 510–520.
DOI: 10.4028/www.scientific.net/amr.966-967.510
Google Scholar
[27]
G. Costanzi, A. Bachmann, M.F. Zaeh: Entwicklung eines FSW-Spezialwerkzeugs zur Messung der Schweißtemperatur (Development of a FSW tool to measure the welding temperature,), in: DVS Media GmbH (Ed.), DVS-Studentenkongress, DVS Congress 2017, 337, Duesseldorf, 26. –29. September, 2017, p.119.
Google Scholar