Temperature Control for Friction Stir Welding of Dissimilar Metal Joints and Influence on the Joint Properties

Article Preview

Abstract:

Friction Stir Welding (FSW) is a suitable technology to join dissimilar metals such as aluminum and copper or aluminum and titanium. Since it is a solid state welding process, the solidus temperature is typically not exceeded and the formation of intermetallic phases can be minimized compared to fusion welding processes. However, an intermetallic layer is still formed at the joining interface. This layer determines the seam properties such as the joint strength or the electrical conductivity. The thickness of the layer is in the nanometer range and is mainly influenced by the welding temperature via an Arrhenius law. The process temperature mainly depends on the rotational speed and on the feed rate of the machine tool. In this study, a temperature control system for aluminum-copper lap joints was developed. A PI control system was used for this purpose to maintain the given welding temperature by adjusting the rotational speed. Consequently, a constant welding temperature was ensured along the entire seam and influences such as changes in workpiece geometry, environmental conditions, or material variations could be mitigated. Experiments with six different temperature levels (low – high) were conducted for one exemplary welding task in order to verify the proposed constant welding conditions. The joints were investigated by tensile shear tests as well as optical and electron microscopy. It was proven that temperature-controlled FSW ensures a constant thickness of the intermetallic compound layer.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

360-368

Citation:

Online since:

April 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Haubold, L. Wulf, M.F. Zaeh: Validation of a spatter detection algorithm for remote laser welding applications, J. Laser Appl. 29 (2017) 22011.

DOI: 10.2351/1.4982064

Google Scholar

[2] L. Murr: A Review of FSW Research on Dissimilar Metal and Alloy Systems, J. Materi. Eng. Perform. 19 (2010) 1071–1089.

DOI: 10.1007/s11665-010-9598-0

Google Scholar

[3] M. Mubiayi, E. Akinlabi: Friction Stir Welding of Dissimilar Materials between Aluminium Alloys and Copper – An Overview, Proc. World Congr. Eng. 2013 Vol. III (3), World Congr. Eng. 2013, London, 3.–5. July, (2013).

Google Scholar

[4] K. Mehta, V. Badheka: A Review on Dissimilar Friction Stir Welding of Copper to Aluminum. Process, Properties, and Variants, Materi. Manuf. Proc. 31 (2015) 233–254.

DOI: 10.1080/10426914.2015.1025971

Google Scholar

[5] I. Galvão, A. Loureiro, D. Rodrigues: Critical review on friction stir welding of aluminium to copper, Sci. Tech. Weld. Join. 21 (2016) 523–546.

DOI: 10.1080/13621718.2015.1118813

Google Scholar

[6] E. Akinlabi, D. Madyira, S. Akinlabi: Effect of Heat Input on the Electrical Resistivity of Dissimilar Friction Stir Welded Joints of Aluminium and Copper, AFRICON, 2011, Livingstone, Zambia, 13.–15. September, (2011).

DOI: 10.1109/afrcon.2011.6071973

Google Scholar

[7] A. Abdollah-Zadeh, T. Saeid, B. Sazgari: Microstructural and mechanical properties of friction stir welded aluminum/copper lap joints, J. All. Comp. 460 (2008) 535–538.

DOI: 10.1016/j.jallcom.2007.06.009

Google Scholar

[8] H. Bisadi, A. Tavakoli, M. Tour Sangsaraki, K. Tour Sangsaraki: The influences of rotational and welding speeds on microstructures and mechanical properties of friction stir welded Al5083 and commercially pure copper sheets lap joints, Materi. & Des. 43 (2013).

DOI: 10.1016/j.matdes.2012.06.029

Google Scholar

[9] P. Xue, B. Xiao, D. Ni, Z. Ma: Enhanced mechanical properties of friction stir welded dissimilar Al–Cu joint by intermetallic compounds, Materi. Sci. Eng.: A 527 (2010) 5723–5727.

DOI: 10.1016/j.msea.2010.05.061

Google Scholar

[10] P. Xue, B. Xiao, Z. Ma: Effect of Interfacial Microstructure Evolution on Mechanical Properties and Fracture Behavior of Friction Stir-Welded Al-Cu Joints, Met. Mat. Trans. A 46 (2015) 3091–3103.

DOI: 10.1007/s11661-015-2909-1

Google Scholar

[11] C. Tan, Z. Jiang, L. Li, Y. Chen, X. Chen: Microstructural evolution and mechanical properties of dissimilar Al-Cu joints produced by friction stir welding, Materi. & Des. 51 (2013) 466–473.

DOI: 10.1016/j.matdes.2013.04.056

Google Scholar

[12] M. Muthu, V. Jayabalan: Tool travel speed effects on the microstructure of friction stir welded aluminum-copper joints, J. Materi. Proc. Tech. 217 (2015) 105–113.

DOI: 10.1016/j.jmatprotec.2014.11.007

Google Scholar

[13] R. Marstatt, M. Krutzlinger, J. Luderschmid, M.F. Zaeh, F. Haider: Formation of a diffusion-based intermetallic interface layer in friction stir welded dissimilar Al-Cu lap joints, IOP Conf. Ser.: Mater. Sci. Eng. 181 (2017) 181 12002.

DOI: 10.1088/1757-899x/181/1/012002

Google Scholar

[14] C. Genevois, M. Girard, B. Huneau, X. Sauvage, G. Racineux: Interfacial Reaction during Friction Stir Welding of Al and Cu, Met. Mat. Trans. A 42 (2011) 2290–2295.

DOI: 10.1007/s11661-011-0660-9

Google Scholar

[15] I. Galvão, A. Loureiro, D. Verdera, D. Gesto, D. Rodrigues: Influence of Tool Offsetting on the Structure and Morphology of Dissimilar Aluminum to Copper Friction-Stir Welds, Met. Mat. Trans. A 43 (2012) 5096–5105.

DOI: 10.1007/s11661-012-1351-x

Google Scholar

[16] P.K. Sahu, S. Pal, S.K. Pal, R. Jain: Influence of plate position, tool offset and tool rotational speed on mechanical properties and microstructures of dissimilar Al/Cu friction stir welding joints, J. Mat. Proc. Tech. 235 (2016) 55–67.

DOI: 10.1016/j.jmatprotec.2016.04.014

Google Scholar

[17] D. Mayfield, C. Sorensen: An improved temperature control algorithm for friction stir processing, 8th International Friction Stir Welding Symposium, TWI, Timmendorfer Strand, Germany, 18.–20. May, (2010).

Google Scholar

[18] H. Uzun, C. Dalle Donne, A. Argagnotto, T. Ghidini, C. Gambaro: Friction stir welding of dissimilar Al 6013-T4 To X5CrNi18-10 stainless steel, Mat. & Des. 26 (2005) 41–46.

DOI: 10.1016/j.matdes.2004.04.002

Google Scholar

[19] A. Fehrenbacher, C. Smith, N. Duffie, N. Ferrier, F. Pfefferkorn, M. Zinn: Combined temperature and force control for robotic friction stir welding, J. Manuf. Sci. Eng., 136 (2014) 1–27.

DOI: 10.1115/1.4025912

Google Scholar

[20] L. Cederqvist, O. Garpinger, T. Hägglund, A. Robertsson: Cascade control of the friction stir welding process to seal canisters for spent nuclear fuel, Contr. Eng. Prac. 20 (2012) 35–48.

DOI: 10.1016/j.conengprac.2011.08.009

Google Scholar

[21] K. Ross, C. Sorensen: Investigation of methods to control friction stir weld power with spindle speed changes, Proc. Fric. St. Weld. Proc. VI, San Diego, USA, (2011).

DOI: 10.1002/9781118062302.ch40

Google Scholar

[22] J. de Backer, G. Bolmsjö, A.-K. Christiansson: Temperature control of robotic friction stir welding using the thermoelectric effect, Int. J. Adv. Manuf. Tech. 70 (2014) 375–383.

DOI: 10.1007/s00170-013-5279-0

Google Scholar

[23] A. Bachmann, J. Gamper, M. Krutzlinger, A. Zens, M.F. Zaeh: Adaptive model-based temperature control in friction stir welding, Int. J. Adv. Manuf. Tech. 93 (2017) 1157–1171.

DOI: 10.1007/s00170-017-0594-5

Google Scholar

[24] T. Davis, Y. Shin, B. Yao: Observer-based adaptive robust control of friction stir welding axial force, IEEE/ASME Trans. Mechatr. 16 (2011) 1032–1039.

DOI: 10.1109/tmech.2010.2071417

Google Scholar

[25] B. Taysom, C. Sorensen, J. Hedengren: A comparison of model predictive control and PID temperature control in friction stir welding, J. Manuf. Proc. 29 (2017) 232–241.

DOI: 10.1016/j.jmapro.2017.07.015

Google Scholar

[26] M. Krutzlinger, R. Marstatt, S. Suenger, J. Luderschmid, M.F. Zaeh, F. Haider: Formation of Joining Mechanisms in Friction Stir Welded Dissimilar Al-Ti Lap Joints, Adv. Mat. Res. 966-967 (2014) 510–520.

DOI: 10.4028/www.scientific.net/amr.966-967.510

Google Scholar

[27] G. Costanzi, A. Bachmann, M.F. Zaeh: Entwicklung eines FSW-Spezialwerkzeugs zur Messung der Schweißtemperatur (Development of a FSW tool to measure the welding temperature,), in: DVS Media GmbH (Ed.), DVS-Studentenkongress, DVS Congress 2017, 337, Duesseldorf, 26. –29. September, 2017, p.119.

Google Scholar