Shear-Clinching of Multi-Element Specimens of Aluminium Alloy and Ultra-High-Strength Steel

Article Preview

Abstract:

The newly developed joining-by-forming technology “shear-clinching”, features a potentially single-stage process for joining UHSS without requiring any additional elements. Foundational studies have focused on the functionality of shear-clinching at a one-element sample. To ensure the safety of the industrial application of the shear-clinching technology, an investigation with component-like samples with several joints is required. This paper presents a detailed analysis of the material behaviour during the shear-clinching process with multi-element specimens to evaluate the influence of the neighbouring joints. In order to describe the influence of the neighbouring joints, the deformations resulting from the bending and material displacement are recorded without contact after the joining process: locally around the joining point and globally over the entire sample size. To minimize such bending effects, a tool-sided adaptation is provided. The results show the high potential of shear-clinching joining by UHSS and give further recommendations for future multi-material application.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

389-396

Citation:

Online since:

April 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Schindler, V., Sievers, I. (Hrsg): Forschung für das Auto von morgen – Aus Tradition entsteht Zukunft; Sammelband, Springer Verlag Berlin Heidelberg, (2008).

Google Scholar

[2] K. Mori, Y. Abe, T. Kato, Self-pierce riveting of multiple steel and aluminium alloy sheets Journal of Materials Processing Technology 214-10 (2014) 2002-(2008).

DOI: 10.1016/j.jmatprotec.2013.09.007

Google Scholar

[3] Y. Abe, K. Mori, T. Kato, Joining of high strength steel and aluminium alloy sheets by mechanical clinching with dies for control of metal flow, Journal of Materials Processing Technology 212-4 (2012) 884-889.

DOI: 10.1016/j.jmatprotec.2011.11.015

Google Scholar

[4] Busse, S.: Entwicklung und Qualifizierung eines Schneidclinchver-fahrens; Dissertation, Friedrich-Alexander-Universität Erlangen-Nürn-berg, Meisenbach Verlag, Bamberg, (2013).

Google Scholar

[5] Y. Abe, A. Matsuda, T. Kato, K. Mori, Plastic joining of aluminium alloy and high strength steel sheets by mechanical clinching, Steel Research International, Special Edition 79-1 (2008) 649–657.

DOI: 10.1080/09507110802410361

Google Scholar

[6] DIN 8593-5, Fertigungsverfahren Fügen, Beuth Verlag, Berlin, (1985).

Google Scholar

[7] Mucha, J. (2011). The analysis of lock forming mechanism in the clinching joint, Materials and Design 32 (10), pp.4943-4954. https://doi.org/10.1016/j.matdes.2011.05.045.

DOI: 10.1016/j.matdes.2011.05.045

Google Scholar

[8] Merklein, M.; Meschut, G.; Müller, M.; Hörhold, R.: Grundlegende Untersuchungen zur Verbindung von pressgehärtetem Stahl und Aluminium mittels Schneidclinchen, 2013, Tagungsband 3. Sächsische Fachtagung Umformtechnik, S. 63-72.

Google Scholar

[9] Letsch, S.; Meschut, G.; Kuting, J.; Peitz, V. et al: "Mechanische Fügetechnik für die Mischbauweise, Teil 2 – Neuartige Fügeverfahren -, Schweißen und Schneiden 56, 2004, Nr. 10, pp.518-526.

Google Scholar

[10] Hörhold, R.; Müller, M.; Merklein, M.; Meschut, G.: Specimen´s Geometry Related Influences on Load-Bearing Capacity of Joining Aluminium and UHSS by Innovative Shear-Clinching, 2017, Vol. 6, No. 4, Journal of Materials Science Research.

DOI: 10.5539/jmsr.v6n4p19

Google Scholar

[11] Hörhold, R., Müller, M., Merklein, M., & Meschut, G. Mechanical properties of an innovative shear-clinching technology for ultra-high-strength steel and aluminium in lightweight car body structures, Welding in the World, 2016, Vol. 60, Issue 3, pp.613-620.

DOI: 10.1007/s40194-016-0313-0

Google Scholar

[12] A. Birkert, S. Haage, M. Straub: Umformtechnische Herstellung komplexer Karosserieteile, Springer Vierweg, Berlin Heidelberg, (2013).

DOI: 10.1007/978-3-662-46038-2

Google Scholar

[13] Müller, M., Hörhold, R., Meschut, G., & Merklein, M. (2015).

Google Scholar

[14] Conrad, K.: Taschenbuch der Werkzeugmaschinen, Carl Hanser Verlag, München, 2015, ISBN: 978-3-446-43855-2.

Google Scholar