Preparation and Electrochemical Properties of Graphene/MnO2 Nanocomposites for Supercapacitors

Article Preview

Abstract:

In the present work, we demonstrated a facile process to prepare graphene/MnO2 composites via a simple hydrothermal method at 120 °C using KMnO4 and graphene oxide as raw materials followed by reduction with or without hydrazine. The electrochemical performance of the graphene/MnO2 composites were investigated in a neutral electrolyte of Na2SO4. Among these samples, the sample rGM3 prepared without hydrazine show uniform morphology and the best electrochemical performance. The specific capacitance of rGM3 is 169 F g-1 at a specific current of 0.2 A g-1. It exhibits a maintenance of 75.5 % of the initial capacitance after 1000 cycles. The results manifest that the graphene/MnO2 composites can be potentially applied in supercapacitors.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

102-108

Citation:

Online since:

April 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K. Wang, H.P. Wu, Y.N. Meng, Z.X. Wei. Conducting polymer nanowire arrays for high performance supercapacitors. Small 2014, 10 , 14-31.

DOI: 10.1002/smll.201301991

Google Scholar

[2] S. Zhang, N. Pan. Supercapacitors performance evaluation. Adv. Energy Mater. 2015, 5.

Google Scholar

[3] X. Li, B. Wei. Supercapacitors based on nanostructured carbon. Nano Energy 2013, 2 , 159-173.

Google Scholar

[4] J. Yan, Q. Wang, T. Wei, Z. Fan. Recent advances in design and fabrication of electrochemical supercapacitors with high energy densities. Adv. Energy Mater. 2008, 4 , 157-164.

DOI: 10.1002/aenm.201470017

Google Scholar

[5] P. Simon, Y. Gogotsi. Materials for electrochemical capacitors. Nat. Mater. 2008, 7 , 845-854.

Google Scholar

[6] M.D. Stoller, R.S. Ruoff. Best practice methods for determining an electrode material's performance for ultracapacitors. Energy & Environ. Sci. 2010, 3 , 1294-1301.

DOI: 10.1039/c0ee00074d

Google Scholar

[7] B. Y. Zhu, S. Murali, W. Cai, X. Li, J. W. Suk, J. R. Potts, et al. Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater 2010, 22:3906–24.

DOI: 10.1002/adma.201001068

Google Scholar

[8] Y. Y. Peng, Y. M. Liu, J. K. Chang, C. H. Wu, M. D. Ger, N. W. Pu, et al. A facile approach to produce holey graphene and its application in supercapacitors. Carbon 2015, 81:347–56.

DOI: 10.1016/j.carbon.2014.09.067

Google Scholar

[9] Y. Zhang, D. Li, X. Tan, B. Zhang, X. Ruan, H. Liu, et al. High quality graphene sheets from graphene oxide by hot-pressing. Carbon 2013, 54:143–8.

DOI: 10.1016/j.carbon.2012.11.012

Google Scholar

[10] Z. S.Wu, W. Ren, D. W. Wang. High-Energy MnO2 Nanowire/Graphene and Graphene Asymmetric Electrochemical Capacitors. ACS Nano. 2010, 4 , 5835-5842.

DOI: 10.1021/nn101754k

Google Scholar

[11] F. L. Jia, L. Z. Zhang, X. Y. Shang, et al.. Non-aqueous sol-gel approach towards the controllable synthesis of nickel nanospheres, nanowires, and nanoflowers. Adv. Mater. 2008, 20, 1050–1054.

DOI: 10.1002/adma.200702159

Google Scholar

[12] D. Zitoun, N. Pinna, N. Frolet, C. Belin. Single crystal manganese oxide multipods by oriented attachment. J. Am. Chem. Soc. 2005, 127 , 15034-15035.

DOI: 10.1021/ja0555926

Google Scholar

[13] H. M. Chen, J. M. He, C. B. Zhang, H. He. Self-assembly of novel mesoporous manganese oxide nanostructures and their application in oxidative decomposition of formaldehyde. J. Phys. Chem. C 2007, 111 , 18033-18038.

DOI: 10.1021/jp076113n

Google Scholar

[14] Y. S. Ding, X. F. Shen, S. Sithambaram, S. Gomez, R. Kumar, V. M. Crisostomo, S. L. Suib, M. Aindow. Synthesis and catalytic activity of cryptomelane-type manganese dioxide nanomaterials produced by a novel solvent-free method. Chem. Mater. 2005, 17 , 5382-5389.

DOI: 10.1021/cm051294w

Google Scholar

[15] R. Liu, S. B. Lee. MnO2/Poly(3,4-ethylenedioxythiophene) coaxial nanowires by one-step coelectrodeposition for electrochemical energy storage. J. Am. Chem. Soc. 2008, 130, 2942-2943.

DOI: 10.1021/ja7112382

Google Scholar

[16] L. P. Zhu, H. M. Xiao, W. D. Zhang, Y. Yang, S. Y. Fu. Synthesis and characterization of novel three-dimensional metallic Co dendritic superstructures by a simple hydrothermal reduction route. Cryst. Growth Des. 2008, 4 ,1113-1118.

DOI: 10.1021/cg701036k

Google Scholar

[17] G. P. Wang, L. Zhang, J.J. Zhang. A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev. 2012, 41, 797-828.

DOI: 10.1039/c1cs15060j

Google Scholar

[18] H. L. Li, L. X. Jiang, Q. L. Cheng, et al. MnO2 nanoflakes@hierarchical porous carbon nano- composites for high-performance supercapacitor electrodes. Electrochim. Acta, 2015, 164, 252-259.

DOI: 10.1016/j.electacta.2015.02.218

Google Scholar

[19] D. Hou, H. S. Tao, X. Z. Zhu, M. G. Li. Polydopamine and MnO2 core-shell composites for high-performance supercapacitors. Appl. Surf. Sci., 2017, 419, 580-585.

DOI: 10.1016/j.apsusc.2017.05.080

Google Scholar

[20] W. S. Hummers, R. E. Offeman. Preparation of graphitic oxide. J. Am. Chem. Soc. 1958, 80, 1339.

DOI: 10.1021/ja01539a017

Google Scholar

[21] Y. Chen, X. Zhang, P. Yu, et al. Stable dispersions of graphene and highly conducting graphene films: a new approach to creating colloids of graphene monolayers. Chem. Commun. 2009, 30, 4527-4529.

DOI: 10.1039/b907723e

Google Scholar