[1]
Gholivand MB, Malekzadeh G, Derakhshan AA, Boehmite nanoparticle modified carbon paste electrode for determination of piroxicam, Sensor Actuators B. 201(2014)378-386.
DOI: 10.1016/j.snb.2014.04.054
Google Scholar
[2]
M. Chen, I. Y. Phang, M. R. Lee, J. K. Yang and X. Y. Ling, Layer-By-Layer Assembly of Ag Nanowires into 3D Woodpile-like Structures to Achieve High Density Hot Spots, for Surface-Enhanced Raman Scattering, Langmuir. 29(2013) 7061-7069.
DOI: 10.1021/la4012108
Google Scholar
[3]
S. Mehra, M. G. Christoforo, P. Peumans and A. Salleo, Solution processed zinc oxide nanopyramid/silver nanowire transparent network films with highly tunable light scattering properties, Nanoscale. 5(2013)4400-4403.
DOI: 10.1039/c3nr00863k
Google Scholar
[4]
Gholivand MB, Jalalvand AR, Paimard G, Goicoechea HC, Skov T, Farhadi R, Ghobadi S,Moradi N, Nasirian V, Fabrication of a novel naltrexone biosensor based on a computationally engineered nanobiocomposite, Int J Biol Macromol. 70(2014)596-605.
DOI: 10.1016/j.ijbiomac.2014.07.028
Google Scholar
[5]
Y. Tang, W. He, S. Wang, Z. Tao and L. Cheng, One step synthesis of silver nanowires used in preparation of conductive silver paste, Journal of Materials Science: Materials in Electronics. 25(2014)2929-2933.
DOI: 10.1007/s10854-014-1961-8
Google Scholar
[6]
I. Moreno, N. Navascues, M. Arruebo, S. Irusta and J. Santamaria, Facile preparation of transparent and conductive polymer films based on silver nanowire/polycarbonate nanocomposites, Nanotechnology. 24(2013)595-603.
DOI: 10.1088/0957-4484/24/27/275603
Google Scholar
[7]
Ko H-H, Yang G, Cheng H-Z, Wang M-C, Zhao X, Growth and optical properties of ceriumdioxide nanocrystallites prepared by coprecipitation routes, Ceram Int.40(2014)4055-4064.
DOI: 10.1016/j.ceramint.2013.08.059
Google Scholar
[8]
Ko H-H, Yang G, Wang M-C, Zhao X, Isothermal crystallization kinetics and effect of crystallinity on the optical properties of nanosized CeO2 powder, Ceram Int.40(2014)6663-6671.
DOI: 10.1016/j.ceramint.2013.11.126
Google Scholar
[9]
B. Feng, X. L. Gu, X. B. Zhao, Y. Zhang, T. Y. Zhang, J. G. Shi, In situ synthesis of silver/chemically reduced graphene nanocomposite and its use for low temperature conductive paste. Journal of Materials Science-Materials In Electronics. 28(2017).
DOI: 10.1007/s10854-017-6462-0
Google Scholar
[10]
M. S. Goh, Y. H. Lee, S. Pedireddy, I. Y. Phang, W. W. Tjiu, J. M. Tan and X. Y. Ling, A Chemical Route To Increase Hot Spots on Silver Nanowires for Surface-Enhanced Raman Spectroscopy Application, Langmuir. 28(2012)14441-14449.
DOI: 10.1021/la302795r
Google Scholar
[11]
W. Hu, X. Niu, R. Zhao and Q. Pei, Elastomeric transparent capacitive sensors based on an interpenetrating composite of silver nanowires and polyurethane, Appl. Phys. Lett., 102(2013)083-303.
DOI: 10.1063/1.4794143
Google Scholar
[12]
Lyubutin IS, Starchikov SS, Lin C-R, Lu S-Z, Shaikh MO, Funtov KO, Dmitrieva TV, Ovchinnikov SG, Edelman IS, Ivantsov R. Magnetic, structural, and electronic properties of iron sulfide Fe3S4 nanoparticles synthesized by the polyol mediated process, J Nanopart Res. 15(2013).
DOI: 10.1007/s11051-012-1397-0
Google Scholar
[13]
Mendes PM. Cellular nanotechnology: making biological interfaces smarter, Chem Soc Rev. 42(2013)9207-9218.
DOI: 10.1039/c3cs60198f
Google Scholar
[14]
Ma X, Zhu X, You F, Feng J, Wang M-C, Zhao X, Preparation and optical polarization of Ag/epoxy composite films with aligned Ag nanowires. J Alloys Compd. 592(2014)57-62.
DOI: 10.1016/j.jallcom.2014.01.004
Google Scholar
[15]
Y. Chen, Y. Zhang, J.Z. Chen, et al., Understanding the Influence of Crystallographic Structure on Controlling the Shape of Noble Metal Nanostructures, Cryst. Growth Des. 11(2011) 54-57.
Google Scholar
[16]
L.C. Lin, L. Liu, P. Peng, et al., In situ nanojoining of Y- and T-shaped silver nanowires structures using femto second laser radiation, Nanotechnology. 2016, 125-201.
DOI: 10.1088/0957-4484/27/12/125201
Google Scholar
[17]
D.S. Hecht, L.B. Hu, G. Irvin, Emerging transparent electrodes based on thin films of carbon nano-tubes, graphene, and metallic nanostructures, Adv. Ma- ter. 23 (2011) 1482-1513.
DOI: 10.1002/adma.201003188
Google Scholar
[18]
J. Lee, P. Lee, H.B. Lee, S. Hong, I. Lee, J. Yeo, et al., Room-temperature nanosoldering of a very long metal nanowire network by conducting-polymer-assisted joining for a flexible touch-panel application, AdvFunct Mater. 23 (2013) 4171-4176.
DOI: 10.1002/adfm.201203802
Google Scholar
[19]
K.L. Zhang, Y.G. Du, S.M. Chen, Sub 30 nm silver nanowire synthesized using KBr as co-nucleant through one-pot polyol method for optoelectronic appli-cations, Org. Electron. 26 (2015) 380-385.
DOI: 10.1016/j.orgel.2015.08.008
Google Scholar
[20]
J. Q Mo, J.W Hou, and X.Y Lv,Template-directed synthesis of Ag nanowire arrays by a simple paired cell method for SERS, Optoelectronics Letters. 11(2015) 401-404.
DOI: 10.1007/s11801-015-5158-z
Google Scholar
[21]
J. Lee, P. Lee, H. Lee, et al., Very long Ag nanowire synthesis and its application in a highly transparent, conductive and flexible metal electrode touch panel, Nanoscale. 4(2012) 6408-6414.
DOI: 10.1039/c2nr31254a
Google Scholar
[22]
S. Murali, T. Xu, B.D. Marshall, et al., Lyotropic liquid crystalline self-assembly in dispersions of silver nanowires and nanoparticles, Langmuir. 26(2010) 11176-11183.
DOI: 10.1021/la101305z
Google Scholar
[23]
R.M. Mutiso, M.C. Sherrott, A.R. Rathmell, B.J. Wiley, K.I. Winey, Integrating simulations and experiments to predict sheet resistance and optical trans-mittance in nanowire films for transparent conductors, ACS Nano. 7 (2013)7654-7663.
DOI: 10.1021/nn403324t
Google Scholar
[24]
H.W. Ding, Y.J. Zhang, G.B. Yang, S.M. Zhang L.G. Yu and P.Y. Zhang, Large scale preparation of silver nanowires with different diameters by a one-pot method and their application in transparent conducting films, RSC Advance. 6(2016)8096-8102.
DOI: 10.1039/c5ra25474d
Google Scholar
[25]
K. Zhan, R. Su, S.H. Bai, Z.H. Yu, One-pot stirring-free synthesis of silver nanowires with tunable lengths and diameters via a Fe3+ &Cl− co-mediated polyol method and their application as transparent conductive films, Nanoscale. 8(2016).
DOI: 10.1039/c6nr04972a
Google Scholar
[26]
A. Amirjani, D.H. Fatmehsari, P. Marashi, Interactive effect of agitation rate and oxidative etching on growth mechanisms of silver nanowires during polyol process, J. ExpNanosci. 10(2015) 1387-1400.
DOI: 10.1080/17458080.2015.1014872
Google Scholar
[27]
S. Coskun, B. Aksoy, H.E. Unalan, Polyol synthesis of silver nanowires: an extensive parametric study, Cryst. Growth Des. 11(2011) 4963-4969.
DOI: 10.1021/cg200874g
Google Scholar
[28]
S. Wang, Y.H. Tian, S.Ding, Y.L. Huang, Rapid synthesis of long silver nanowires by controlling concentration of Cu2+ ions, Materials Letters. 172(2016)175–178.
DOI: 10.1016/j.matlet.2016.02.124
Google Scholar
[29]
Ran, Y. X. He, W. W. Wang, K. Ji, S. L. Ye, C. H, A one-step route to Ag nanowires with a diameter below 40 nmand an aspect ratio above 1000. Chem, Commun. 50(2014)14877-14880.
DOI: 10.1039/c4cc04698f
Google Scholar
[30]
Schuette, W. M. Buhro, W. E, Silver chloride as a hetero-geneous nucleant for the growth of silver nanowires, ACS Nano. 7(2013)3844-3853.
DOI: 10.1021/nn400414h
Google Scholar
[31]
Tetsumoto, T. Gotoh, Y. Ishiwatari, T. Mechanistic studies on the formation of silver nanowires by a hydrothermal method, J. Colloid Interface Sci. 362(2011)267-273.
DOI: 10.1016/j.jcis.2011.05.079
Google Scholar
[32]
Zhu, J. J. Kan, C. X. Wan, J. G. Han, M. Wang, G. H. High-yield synthesis of uniform Ag nanowires with high aspect ratios by introducing the long-chain PVP in an improved polyol process, J. Nanomater. 7(2011)1381-1386.
DOI: 10.1155/2011/982547
Google Scholar
[33]
Lee, J. H.; Lee, P.; Lee, D.; Lee, S. S.; Ko, S. H. Large-scale synthesis and characterization of very long silver nanowires via successive multistep growth. Cryst. Growth Des. 12(2012) 5598-5605.
DOI: 10.1021/cg301119d
Google Scholar
[34]
Li, B.; Ye, S. R.; Stewart, I. E.; Alvarez, S.; Wiley, B. J. Synthesis and purification of silver nanowires to make conducting films with a transmittance of 99%, Nano Lett. 15(2015)6722-6726.
DOI: 10.1021/acs.nanolett.5b02582
Google Scholar