Synthesis and Characterizing of High Aspect Ratio Silver Nanowires by Polyol Process

Article Preview

Abstract:

Silver nanowires with controllable and high length-diameter ratio were prepared by using the reductibility of ethylene glycol under high temperature and selective adsorption of PVP. AgNO3, ethylene glycol, PVP and CuCl2 was used as the silver source, the reductant, the capping agent and the ion additives, respectively. The effects of centrifugal rate, silver ions' concentration, AgNO3 adding rate on the morphology of silver nanowires were investigated by SEM, XRD, TEM and other technologies. The results show that the optimal centrifugal rate is 2000n/s, the better silver ions’ concentration is 6.55 mg/mL, and the best rate of adding AgNO3 is 6 ml/min. The silver nanowires with an average diameter of 74.9 nm, the average length of 45.5μm and its length-diameter ratio of 607.5 are obtained. The silver nanowires with good morphology and high length-diameter ratio are adjustable, which is suitable for the preparation of OLED transparent film electrode materials, and other conductive materials.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

75-84

Citation:

Online since:

April 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Gholivand MB, Malekzadeh G, Derakhshan AA, Boehmite nanoparticle modified carbon paste electrode for determination of piroxicam, Sensor Actuators B. 201(2014)378-386.

DOI: 10.1016/j.snb.2014.04.054

Google Scholar

[2] M. Chen, I. Y. Phang, M. R. Lee, J. K. Yang and X. Y. Ling, Layer-By-Layer Assembly of Ag Nanowires into 3D Woodpile-like Structures to Achieve High Density Hot Spots, for Surface-Enhanced Raman Scattering, Langmuir. 29(2013) 7061-7069.

DOI: 10.1021/la4012108

Google Scholar

[3] S. Mehra, M. G. Christoforo, P. Peumans and A. Salleo, Solution processed zinc oxide nanopyramid/silver nanowire transparent network films with highly tunable light scattering properties, Nanoscale. 5(2013)4400-4403.

DOI: 10.1039/c3nr00863k

Google Scholar

[4] Gholivand MB, Jalalvand AR, Paimard G, Goicoechea HC, Skov T, Farhadi R, Ghobadi S,Moradi N, Nasirian V, Fabrication of a novel naltrexone biosensor based on a computationally engineered nanobiocomposite, Int J Biol Macromol. 70(2014)596-605.

DOI: 10.1016/j.ijbiomac.2014.07.028

Google Scholar

[5] Y. Tang, W. He, S. Wang, Z. Tao and L. Cheng, One step synthesis of silver nanowires used in preparation of conductive silver paste, Journal of Materials Science: Materials in Electronics. 25(2014)2929-2933.

DOI: 10.1007/s10854-014-1961-8

Google Scholar

[6] I. Moreno, N. Navascues, M. Arruebo, S. Irusta and J. Santamaria, Facile preparation of transparent and conductive polymer films based on silver nanowire/polycarbonate nanocomposites, Nanotechnology. 24(2013)595-603.

DOI: 10.1088/0957-4484/24/27/275603

Google Scholar

[7] Ko H-H, Yang G, Cheng H-Z, Wang M-C, Zhao X, Growth and optical properties of ceriumdioxide nanocrystallites prepared by coprecipitation routes, Ceram Int.40(2014)4055-4064.

DOI: 10.1016/j.ceramint.2013.08.059

Google Scholar

[8] Ko H-H, Yang G, Wang M-C, Zhao X, Isothermal crystallization kinetics and effect of crystallinity on the optical properties of nanosized CeO2 powder, Ceram Int.40(2014)6663-6671.

DOI: 10.1016/j.ceramint.2013.11.126

Google Scholar

[9] B. Feng, X. L. Gu, X. B. Zhao, Y. Zhang, T. Y. Zhang, J. G. Shi, In situ synthesis of silver/chemically reduced graphene nanocomposite and its use for low temperature conductive paste. Journal of Materials Science-Materials In Electronics. 28(2017).

DOI: 10.1007/s10854-017-6462-0

Google Scholar

[10] M. S. Goh, Y. H. Lee, S. Pedireddy, I. Y. Phang, W. W. Tjiu, J. M. Tan and X. Y. Ling, A Chemical Route To Increase Hot Spots on Silver Nanowires for Surface-Enhanced Raman Spectroscopy Application, Langmuir. 28(2012)14441-14449.

DOI: 10.1021/la302795r

Google Scholar

[11] W. Hu, X. Niu, R. Zhao and Q. Pei, Elastomeric transparent capacitive sensors based on an interpenetrating composite of silver nanowires and polyurethane, Appl. Phys. Lett., 102(2013)083-303.

DOI: 10.1063/1.4794143

Google Scholar

[12] Lyubutin IS, Starchikov SS, Lin C-R, Lu S-Z, Shaikh MO, Funtov KO, Dmitrieva TV, Ovchinnikov SG, Edelman IS, Ivantsov R. Magnetic, structural, and electronic properties of iron sulfide Fe3S4 nanoparticles synthesized by the polyol mediated process, J Nanopart Res. 15(2013).

DOI: 10.1007/s11051-012-1397-0

Google Scholar

[13] Mendes PM. Cellular nanotechnology: making biological interfaces smarter, Chem Soc Rev. 42(2013)9207-9218.

DOI: 10.1039/c3cs60198f

Google Scholar

[14] Ma X, Zhu X, You F, Feng J, Wang M-C, Zhao X, Preparation and optical polarization of Ag/epoxy composite films with aligned Ag nanowires. J Alloys Compd. 592(2014)57-62.

DOI: 10.1016/j.jallcom.2014.01.004

Google Scholar

[15] Y. Chen, Y. Zhang, J.Z. Chen, et al., Understanding the Influence of Crystallographic Structure on Controlling the Shape of Noble Metal Nanostructures, Cryst. Growth Des. 11(2011) 54-57.

Google Scholar

[16] L.C. Lin, L. Liu, P. Peng, et al., In situ nanojoining of Y- and T-shaped silver nanowires structures using femto second laser radiation, Nanotechnology. 2016, 125-201.

DOI: 10.1088/0957-4484/27/12/125201

Google Scholar

[17] D.S. Hecht, L.B. Hu, G. Irvin, Emerging transparent electrodes based on thin films of carbon nano-tubes, graphene, and metallic nanostructures, Adv. Ma- ter. 23 (2011) 1482-1513.

DOI: 10.1002/adma.201003188

Google Scholar

[18] J. Lee, P. Lee, H.B. Lee, S. Hong, I. Lee, J. Yeo, et al., Room-temperature nanosoldering of a very long metal nanowire network by conducting-polymer-assisted joining for a flexible touch-panel application, AdvFunct Mater. 23 (2013) 4171-4176.

DOI: 10.1002/adfm.201203802

Google Scholar

[19] K.L. Zhang, Y.G. Du, S.M. Chen, Sub 30 nm silver nanowire synthesized using KBr as co-nucleant through one-pot polyol method for optoelectronic appli-cations, Org. Electron. 26 (2015) 380-385.

DOI: 10.1016/j.orgel.2015.08.008

Google Scholar

[20] J. Q Mo, J.W Hou, and X.Y Lv,Template-directed synthesis of Ag nanowire arrays by a simple paired cell method for SERS, Optoelectronics Letters. 11(2015) 401-404.

DOI: 10.1007/s11801-015-5158-z

Google Scholar

[21] J. Lee, P. Lee, H. Lee, et al., Very long Ag nanowire synthesis and its application in a highly transparent, conductive and flexible metal electrode touch panel, Nanoscale. 4(2012) 6408-6414.

DOI: 10.1039/c2nr31254a

Google Scholar

[22] S. Murali, T. Xu, B.D. Marshall, et al., Lyotropic liquid crystalline self-assembly in dispersions of silver nanowires and nanoparticles, Langmuir. 26(2010) 11176-11183.

DOI: 10.1021/la101305z

Google Scholar

[23] R.M. Mutiso, M.C. Sherrott, A.R. Rathmell, B.J. Wiley, K.I. Winey, Integrating simulations and experiments to predict sheet resistance and optical trans-mittance in nanowire films for transparent conductors, ACS Nano. 7 (2013)7654-7663.

DOI: 10.1021/nn403324t

Google Scholar

[24] H.W. Ding, Y.J. Zhang, G.B. Yang, S.M. Zhang L.G. Yu and P.Y. Zhang, Large scale preparation of silver nanowires with different diameters by a one-pot method and their application in transparent conducting films, RSC Advance. 6(2016)8096-8102.

DOI: 10.1039/c5ra25474d

Google Scholar

[25] K. Zhan, R. Su, S.H. Bai, Z.H. Yu, One-pot stirring-free synthesis of silver nanowires with tunable lengths and diameters via a Fe3+ &Cl− co-mediated polyol method and their application as transparent conductive films, Nanoscale. 8(2016).

DOI: 10.1039/c6nr04972a

Google Scholar

[26] A. Amirjani, D.H. Fatmehsari, P. Marashi, Interactive effect of agitation rate and oxidative etching on growth mechanisms of silver nanowires during polyol process, J. ExpNanosci. 10(2015) 1387-1400.

DOI: 10.1080/17458080.2015.1014872

Google Scholar

[27] S. Coskun, B. Aksoy, H.E. Unalan, Polyol synthesis of silver nanowires: an extensive parametric study, Cryst. Growth Des. 11(2011) 4963-4969.

DOI: 10.1021/cg200874g

Google Scholar

[28] S. Wang, Y.H. Tian, S.Ding, Y.L. Huang, Rapid synthesis of long silver nanowires by controlling concentration of Cu2+ ions, Materials Letters. 172(2016)175–178.

DOI: 10.1016/j.matlet.2016.02.124

Google Scholar

[29] Ran, Y. X. He, W. W. Wang, K. Ji, S. L. Ye, C. H, A one-step route to Ag nanowires with a diameter below 40 nmand an aspect ratio above 1000. Chem, Commun. 50(2014)14877-14880.

DOI: 10.1039/c4cc04698f

Google Scholar

[30] Schuette, W. M. Buhro, W. E, Silver chloride as a hetero-geneous nucleant for the growth of silver nanowires, ACS Nano. 7(2013)3844-3853.

DOI: 10.1021/nn400414h

Google Scholar

[31] Tetsumoto, T. Gotoh, Y. Ishiwatari, T. Mechanistic studies on the formation of silver nanowires by a hydrothermal method, J. Colloid Interface Sci. 362(2011)267-273.

DOI: 10.1016/j.jcis.2011.05.079

Google Scholar

[32] Zhu, J. J. Kan, C. X. Wan, J. G. Han, M. Wang, G. H. High-yield synthesis of uniform Ag nanowires with high aspect ratios by introducing the long-chain PVP in an improved polyol process, J. Nanomater. 7(2011)1381-1386.

DOI: 10.1155/2011/982547

Google Scholar

[33] Lee, J. H.; Lee, P.; Lee, D.; Lee, S. S.; Ko, S. H. Large-scale synthesis and characterization of very long silver nanowires via successive multistep growth. Cryst. Growth Des. 12(2012) 5598-5605.

DOI: 10.1021/cg301119d

Google Scholar

[34] Li, B.; Ye, S. R.; Stewart, I. E.; Alvarez, S.; Wiley, B. J. Synthesis and purification of silver nanowires to make conducting films with a transmittance of 99%, Nano Lett. 15(2015)6722-6726.

DOI: 10.1021/acs.nanolett.5b02582

Google Scholar