Effect of NaN3 Addition Content on NaCl-NaF Medium Nitridation Synthesis β-Sialon Powders

Article Preview

Abstract:

β-Sialon powders were synthesized via salt-assisted nitridation synthesis from Al, Si, SiO2 powders and molten salt medium (NaCl and NaF) with the addition of different content of NaN3 at different temperature for 3 h. NaN3 were employed as auxiliary nitrogen source which effectively provide sufficient nitrogen. The results indicated that the growth of β-Sialon powders had better effect when the NaN3 was added. And the β-Sialon powders grew more completely and the morphology of β-Sialon powders showed the rod-like crystal with hexagonal smooth tips instead of conical tips. In addition, the products displayed different sizes when the content of NaN3 was changed. These results of this work suggested that β-Sialon could be synthesized with specific morphology by adding different content of NaN3.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

146-151

Citation:

Online since:

April 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J.P. Liu, J. Ding, H.X. Zhu, C.J. Deng, Z.N. Chai, Effect of NH4Cl addition on the morphology of b-sialon powders prepared by salt-assisted nitridation. J. Ceram. Soc. Jpn., 125 (3) 155-158.

DOI: 10.2109/jcersj2.16192

Google Scholar

[2] Z. Tatle, A. Demir, R. Yilmaz, F. Caliskan, A.O. Kurt, Effects of processing parameters on the production of b-SiAlON powder from kaolinite, J. Eur. Ceram. Soc. 27 (2007) 743-747.

DOI: 10.1016/j.jeurceramsoc.2006.04.062

Google Scholar

[3] V.A. Izhevskiy, L.A. Genova, J.C. Bressiani, F. Aldinger, Progress in SiAlON ceramics, J. Eur. Ceram. Soc. 20 (2000) 2275-2295.

DOI: 10.1016/s0955-2219(00)00039-x

Google Scholar

[4] X.M. Yi, T. Akiyama, Mechanical-activated, combustion synthesis of b-SiAlON, J. Alloys Comp. 495 (2010) 144-148.

DOI: 10.1016/j.jallcom.2010.01.105

Google Scholar

[5] R. Sivakumar, K. Aoyagi, T. Akiyama, Thermal conductivity of combustion synthesized beta-SiAlONS, Ceram. Int. 35 (2009) 1391-1395.

DOI: 10.1016/j.ceramint.2008.07.006

Google Scholar

[6] C.L. Yeh, F.S. Wu, Y.L. Chen, Effects of α-and b-Si3N4 as precursors on combustion synthesis of (α+b)-SiAlON composites, J. Alloys Comp. 509 (2011) 3985-3990.

DOI: 10.1016/j.jallcom.2010.12.201

Google Scholar

[7] K.J.D. MacKenzie, D.V. Barneveld, Carbothermalsynthesisof b-SiAlON from mechanochemically activated precursors, J. Eur. Ceram. Soc. 26 (2006) 209-215.

Google Scholar

[8] J. Li, H. Ma, Q. Fang, Synthesis of prismatic beta-sialon from the precursor of SBA-15 incorporated with Al(NO3)3 via carbothermal reduction nitridation, Ceram. Int. 34 (2008) 1791-1795.

DOI: 10.1016/j.ceramint.2006.04.026

Google Scholar

[9] J.T. Huang, Z.H. Huang, Y.G. Liu, M.H. Fang, Preparation and blast furnance slag corrosion behavior of SiC-Sialon-ZrN free -fired refractories, Ceram. Int. 40 (2014) 9763-9773.

DOI: 10.1016/j.ceramint.2014.02.063

Google Scholar

[10] K.H. Jack, Sialons and related nitrogen cermics, J. Mater. Sci. 11 (1976) 1135-1158.

Google Scholar

[11] X. Xu, R.N. Fu, K.X. Chen, Cost-effective fabrication of porous α-SiAlON bonded b-SiAlON ceramics, Mater. Lett. 59 (2005) 2601-2604.

DOI: 10.1016/j.matlet.2005.03.048

Google Scholar

[12] J. Ding, C.J. Deng, W.J. Yuan, H.X. Zhu, X.J. Zhang, Novel synthesis and characterization of silicon carbide nanowires on graphite flakes, Ceram. Int. 40 (2014) 4001-4007.

DOI: 10.1016/j.ceramint.2013.08.051

Google Scholar

[13] J. Ding, C.J. Deng, W.J. Yuan, H.X. Zhu, J. Li, The synthesis of titanium nitride whiskers on the surface of graphite by molten salt media, Ceram. Int. 39 (2013) 2995-3000.

DOI: 10.1016/j.ceramint.2012.09.077

Google Scholar

[14] B. Roy, P.A. Fuierer, S. Aich, Synthesis of TiO2 scaffold by a 2 step bi-layer process using a molten salt synthesis technique, Powder Technol. 208 (2011) 657-662.

DOI: 10.1016/j.powtec.2011.01.004

Google Scholar

[15] Y. Zhang, L.Q. Wang, D.F. Xue, Molten salt route of well dispersive barium titanate nanoparticles, Powder Technol. 217 (2012) 629–633.

DOI: 10.1016/j.powtec.2011.11.043

Google Scholar

[16] Z.N Chai, J. Ding, C.J Deng, et al., Ni-catalyzed synthesis of hexagonal plate-like a-silicon nitride from nitridation of Si powder in molten salt media, Adv. Powder Technol 27 (2016) 1637-1644.

DOI: 10.1016/j.apt.2016.05.027

Google Scholar

[17] J. Ding, D. Guo, C.J. Deng, H.X. Zhu, C. Yu, Low-temperature synthesis of nanocrystalline ZrC coatings on flake graphite by molten salts, Appl. Surf. Sci 407 (2017) 315-321.

DOI: 10.1016/j.apsusc.2017.02.196

Google Scholar

[18] J. Niu, X.M. Yi, I. Nakatsugawa, T. Akiyama, Salt-assisted combustion synthesis of b-SiAlON fine powders, Intermetallics. 35 (2013) 53-59.

DOI: 10.1016/j.intermet.2012.12.003

Google Scholar

[19] J. Niu, K. Harada, I. Nakatsugawa, T. Akiyama, Morphology control of b-SiAlON via salt-assisted combustion synthesis, Ceram. Int. 40 (2014) 1815-1820.

DOI: 10.1016/j.ceramint.2013.07.082

Google Scholar

[20] J. Ding, H.X. Zhu, G.Q. Li, C.J. Deng, Z.N. Chai, Catalyst-assisted synthesis of Si3N4 in molten salt, Ceram. Int. 42 (2016) 2892-2898.

DOI: 10.1016/j.ceramint.2015.10.066

Google Scholar