[1]
J.P. Liu, J. Ding, H.X. Zhu, C.J. Deng, Z.N. Chai, Effect of NH4Cl addition on the morphology of b-sialon powders prepared by salt-assisted nitridation. J. Ceram. Soc. Jpn., 125 (3) 155-158.
DOI: 10.2109/jcersj2.16192
Google Scholar
[2]
Z. Tatle, A. Demir, R. Yilmaz, F. Caliskan, A.O. Kurt, Effects of processing parameters on the production of b-SiAlON powder from kaolinite, J. Eur. Ceram. Soc. 27 (2007) 743-747.
DOI: 10.1016/j.jeurceramsoc.2006.04.062
Google Scholar
[3]
V.A. Izhevskiy, L.A. Genova, J.C. Bressiani, F. Aldinger, Progress in SiAlON ceramics, J. Eur. Ceram. Soc. 20 (2000) 2275-2295.
DOI: 10.1016/s0955-2219(00)00039-x
Google Scholar
[4]
X.M. Yi, T. Akiyama, Mechanical-activated, combustion synthesis of b-SiAlON, J. Alloys Comp. 495 (2010) 144-148.
DOI: 10.1016/j.jallcom.2010.01.105
Google Scholar
[5]
R. Sivakumar, K. Aoyagi, T. Akiyama, Thermal conductivity of combustion synthesized beta-SiAlONS, Ceram. Int. 35 (2009) 1391-1395.
DOI: 10.1016/j.ceramint.2008.07.006
Google Scholar
[6]
C.L. Yeh, F.S. Wu, Y.L. Chen, Effects of α-and b-Si3N4 as precursors on combustion synthesis of (α+b)-SiAlON composites, J. Alloys Comp. 509 (2011) 3985-3990.
DOI: 10.1016/j.jallcom.2010.12.201
Google Scholar
[7]
K.J.D. MacKenzie, D.V. Barneveld, Carbothermalsynthesisof b-SiAlON from mechanochemically activated precursors, J. Eur. Ceram. Soc. 26 (2006) 209-215.
Google Scholar
[8]
J. Li, H. Ma, Q. Fang, Synthesis of prismatic beta-sialon from the precursor of SBA-15 incorporated with Al(NO3)3 via carbothermal reduction nitridation, Ceram. Int. 34 (2008) 1791-1795.
DOI: 10.1016/j.ceramint.2006.04.026
Google Scholar
[9]
J.T. Huang, Z.H. Huang, Y.G. Liu, M.H. Fang, Preparation and blast furnance slag corrosion behavior of SiC-Sialon-ZrN free -fired refractories, Ceram. Int. 40 (2014) 9763-9773.
DOI: 10.1016/j.ceramint.2014.02.063
Google Scholar
[10]
K.H. Jack, Sialons and related nitrogen cermics, J. Mater. Sci. 11 (1976) 1135-1158.
Google Scholar
[11]
X. Xu, R.N. Fu, K.X. Chen, Cost-effective fabrication of porous α-SiAlON bonded b-SiAlON ceramics, Mater. Lett. 59 (2005) 2601-2604.
DOI: 10.1016/j.matlet.2005.03.048
Google Scholar
[12]
J. Ding, C.J. Deng, W.J. Yuan, H.X. Zhu, X.J. Zhang, Novel synthesis and characterization of silicon carbide nanowires on graphite flakes, Ceram. Int. 40 (2014) 4001-4007.
DOI: 10.1016/j.ceramint.2013.08.051
Google Scholar
[13]
J. Ding, C.J. Deng, W.J. Yuan, H.X. Zhu, J. Li, The synthesis of titanium nitride whiskers on the surface of graphite by molten salt media, Ceram. Int. 39 (2013) 2995-3000.
DOI: 10.1016/j.ceramint.2012.09.077
Google Scholar
[14]
B. Roy, P.A. Fuierer, S. Aich, Synthesis of TiO2 scaffold by a 2 step bi-layer process using a molten salt synthesis technique, Powder Technol. 208 (2011) 657-662.
DOI: 10.1016/j.powtec.2011.01.004
Google Scholar
[15]
Y. Zhang, L.Q. Wang, D.F. Xue, Molten salt route of well dispersive barium titanate nanoparticles, Powder Technol. 217 (2012) 629–633.
DOI: 10.1016/j.powtec.2011.11.043
Google Scholar
[16]
Z.N Chai, J. Ding, C.J Deng, et al., Ni-catalyzed synthesis of hexagonal plate-like a-silicon nitride from nitridation of Si powder in molten salt media, Adv. Powder Technol 27 (2016) 1637-1644.
DOI: 10.1016/j.apt.2016.05.027
Google Scholar
[17]
J. Ding, D. Guo, C.J. Deng, H.X. Zhu, C. Yu, Low-temperature synthesis of nanocrystalline ZrC coatings on flake graphite by molten salts, Appl. Surf. Sci 407 (2017) 315-321.
DOI: 10.1016/j.apsusc.2017.02.196
Google Scholar
[18]
J. Niu, X.M. Yi, I. Nakatsugawa, T. Akiyama, Salt-assisted combustion synthesis of b-SiAlON fine powders, Intermetallics. 35 (2013) 53-59.
DOI: 10.1016/j.intermet.2012.12.003
Google Scholar
[19]
J. Niu, K. Harada, I. Nakatsugawa, T. Akiyama, Morphology control of b-SiAlON via salt-assisted combustion synthesis, Ceram. Int. 40 (2014) 1815-1820.
DOI: 10.1016/j.ceramint.2013.07.082
Google Scholar
[20]
J. Ding, H.X. Zhu, G.Q. Li, C.J. Deng, Z.N. Chai, Catalyst-assisted synthesis of Si3N4 in molten salt, Ceram. Int. 42 (2016) 2892-2898.
DOI: 10.1016/j.ceramint.2015.10.066
Google Scholar