Diffusion Phenomenon of Precious Metal Electrode Elements into Ceramic Electrolytes after Working Process at SOFC and Sensors

Article Preview

Abstract:

SOFC single cell use the preparation process of precision casting-screen printing-co-sintering and developed a new electrode such as precious metal ceramic electrode. Although SOFC single battery comprehensive performance indicators in our country are currently synchronized with the international advanced technology level, the new precious metal ceramic electrode has not been tested for long-term operation of the full battery. In order to analyze the practicality of the new noble metal ceramic electrode, especially whether the noble metal electrode is one of the factors that cause performance degradation, this paper studies whether the noble metal Pd electrode would diffuse into the YSZ electrolyte during the energization process. The composition and morphology of the electrolytes of 350h half-cell was analyzed by the battery polarization test, SEM, EDX and Electron etching depth analysis of XPS. The result shows that the noble metal Pd element has diffused more than 100 nm into the YSZ electrolyte after 350h constant current.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

167-171

Citation:

Online since:

April 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Dokiya, Solid State Ionics, 152 (2002) 383-392.

Google Scholar

[2] P. Singh, N.Q. Minh, International Journal of Applied Ceramic Technology, 1 (2004) 5–15.

Google Scholar

[3] B.C. Steele, A. Heinzel, Nature, 414 (2001) 345-352.

Google Scholar

[4] R.M. Ormerod, Chemical Society Reviews, 32 (2003) 17-28.

Google Scholar

[5] M. Ni, M.K.H. Leung, D.Y.C. Leung, Fuel Cells, 7 (2007) 269-278.

Google Scholar

[6] S.P. Jiang, Journal of Materials Science, 43 (2008) 6799-6833.

Google Scholar

[7] C. Caspers, A. Gloskovskii, W. Drube, C.M. Schneider, M. Müller, Journal of Applied Physics, 115 (2014) 17C111.

DOI: 10.1063/1.4863803

Google Scholar

[8] K. Une, M. Oguma, Journal of Nuclear Materials, 110 (1982) 215-222.

Google Scholar

[9] D.R. Clarke, C.G. Levi, A.G. Evans, Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 220 (2006) 85-92.

Google Scholar

[10] B.C.H. Steele, J.M. Bae, Solid State Ionics, 106 (1998) 255-261.

Google Scholar

[11] M. Sahibzada, S.J. Benson, R.A. Rudkin, J.A. Kilner, Solid State Ionics, 113 (1998) 285-290.

Google Scholar

[12] Z. Shao, S.M. Haile, Nature, 431 (2004) 170.

Google Scholar

[13] W. Zhou, R. Ran, Z. Shao, W. Zhuang, J. Jia, H. Gu, W. Jin, N. Xu, Acta Materialia, 56 (2008) 2687-2698.

DOI: 10.1016/j.actamat.2008.02.002

Google Scholar

[14] F. Liang, J. Chen, S.P. Jiang, B. Chi, J. Pu, L. Jian, Electrochemical and solid-state letters, 11 (2008).

Google Scholar

[15] C. Sun, R. Hui, J. Roller, Journal of Solid State Electrochemistry, 14 (2010) 1125-1144.

Google Scholar

[16] A. Sayah, D. Solignac, T. Cueni, M. Gijs, Sensors & Actuators A Physical, 84 (2000) 103-108.

DOI: 10.1016/s0924-4247(99)00346-5

Google Scholar

[17] K.B. Albaugh, Journal of the Electrochemical Society, 138 (1991) 3089-3094.

Google Scholar

[18] M.A. Morsy, K. Ikeuchi, M. Ushio, H. Abe, Materials Transactions, 37 (2007) 1511-1517.

Google Scholar

[19] A. Xi, P. Yu, L.N. Zhang, J. Xue, Transactions of the China Welding Institution, (2001).

Google Scholar

[20] H. Yokokawa, N. Sakai, T. Kawada, M. Dokiya, Journal of the Electrochemical Society, 138 (1991) 2719-2726.

Google Scholar

[21] H. Yokokawa, J. Metal Soc. Jpn., 35 (1996) 1345-1351.

Google Scholar

[22] T. Kawada, N. Sakai, H. Yokokawa, M. Dokiya, I. Anzai, Solid State Ionics, 50 (1992) 189-196.

DOI: 10.1016/0167-2738(92)90218-e

Google Scholar

[23] M.J. Jørgensen, P. Holtappels, C.C. Appel, Journal of Applied Electrochemistry, 30 (2000) 411-418.

DOI: 10.1023/a:1003987318963

Google Scholar

[24] A. Weber, R. Männer, B. Jobst, M. Schiele, H. Cerva, R. Waser, E. Ivers-Tiffée, in: Risoe Iinternational Symposium on Materials Science: High Temperature Electrochemistry: Ceramics and Metals, (1996).

Google Scholar

[25] J. Malzbender, P. Batfalsky, R. Vaßen, V. Shemet, F. Tietz, Journal of Power Sources, 201 (2012) 196-203.

DOI: 10.1016/j.jpowsour.2011.10.117

Google Scholar

[26] M. Brant, T. Matencio, L. Dessemond, R. Domingues, Solid State Ionics, 177 (2006) 915-921.

DOI: 10.1016/j.ssi.2006.02.012

Google Scholar

[27] A. Tsoga, S. Ladas, P. Nikolopoulos, Acta Materialia, 45 (1997) 3515-3525.

Google Scholar

[28] L. Bay, T. Jacobsen, Solid State Ionics, 93 (1997) 201-206.

Google Scholar

[29] F. Liang, W. Zhou, B. Chi, J. Pu, S.P. Jiang, L. Jian, International Journal of Hydrogen Energy, 36 (2011) 7670-7676.

Google Scholar

[30] N. Ai, K. Chen, S.P. Jiang, Z. Lü, W. Su, International Journal of Hydrogen Energy, 36 (2011) 7661-7669.

Google Scholar