Periodically Structured Silicon Carbide Nanowires Obtained by Annealing the Mechanically-Alloyed Amorphous 2SiB3CN Powder

Article Preview

Abstract:

The mechanically-alloyed amorphous 2SiB3CN powder was used as the precursor for the preparation of SiC nanowires in the current work. Annealed at 1700 °C in argon for 2 hrs, the composite powder was covered by a large amount of grey-green SiC nanowires. SEM, TEM and XRD results reveal that the nanowires are 200 to 1000 nanometers in diameter and hundreds of micrometers in length. Bamboo-shaped and nodular-like β-SiC nanowire accounts for the major part of the products. The bamboo-shaped nanowires have perfect periodicity and periodically distributed stacking faults. Further research indicates that traces of iron in raw powders acts as catalyst, promoting the V-L-S process of the nanowire growth. Current route provides a new method for the large-scale preparation of the periodically structured SiC nanowires, which may find applications in nano sensors, optoelectronic devices, etc.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

179-186

Citation:

Online since:

April 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Willander, M. Friese, Q.U. Wahab, B. Straumal, Silicon carbide and diamond for high temperature device applications, J. Mater. Sci.-Mater. El. 17 (2006) 1-25.

DOI: 10.1007/s10854-005-5137-4

Google Scholar

[2] F. Bechstedt, P. Käckell, A. Zywietz, K. Karch, B. Adolph, K. Tenelsen, J. Furthmüller, Polytypism and properties of silicon carbide, Phys. Status Solidi B 202 (1997) 35-62.

DOI: 10.1002/1521-3951(199707)202:1<35::aid-pssb35>3.0.co;2-8

Google Scholar

[3] D.H. Wang, D.Q. Wang, Y.J. Hao, G.Q. Jin, X.Y. Guo, K.N. Tu, Periodically twinned SiC nanowires, Nanotechnology 19 (2008) 215602.

DOI: 10.1088/0957-4484/19/21/215602

Google Scholar

[4] G.C. Xi, Y.Y. Peng, S.M. Wan, T.W. Li, W.C. Yu, Y.T. Qian, Lithium-assisted synthesis and characterization of crystalline 3C-SiC nanobelts, J. Phys. Chem. B 108 (2004) 20102-20104.

DOI: 10.1021/jp0462153

Google Scholar

[5] H.W. Shim, H.C. Huang, Nanowebs and nanocables of silicon carbide, Nanotechnology 18 (2007) 335607.

DOI: 10.1088/0957-4484/18/33/335607

Google Scholar

[6] Y.J. Hao, J.B. Wagner, D.S. Su, G.Q. Jin, X.Y. Guo, Beaded silicon carbide nanochains via carbothermal reduction of carbonaceous silica xerogel, Nanotechnology 17 (2006) 2870-2874.

DOI: 10.1088/0957-4484/17/12/008

Google Scholar

[7] M.S. Dresselhaus, Y.-M. Lin, O. Rabin, M.R. Black, J. Kong, G. Dresselhaus, Springer Handbook of Nanotechnology - Part A/4, Nanowires, Springer Berlin Heidelberg, (2010).

DOI: 10.1007/978-3-642-02525-9_4

Google Scholar

[8] Q.G. Fu, H.J. Li, X.H. Shi, K.Z. Li, J. Wei, Z.B. Hu, Synthesis of silicon carbide nanowires by CVD without using a metallic catalyst, Mater. Chem. Phys. 100 (2006) 108-111.

DOI: 10.1016/j.matchemphys.2005.12.014

Google Scholar

[9] J.W. Liu, D.Y. Zhong, F.Q. Xie, M. Sun, E.G. Wang, W.X. Liu, Synthesis of SiC nanofibers by annealing carbon nanotubes covered with Si, Chem. Phys. Lett. 348 (2001) 357-360.

DOI: 10.1016/s0009-2614(01)01113-7

Google Scholar

[10] F.L. Wang, L.Y. Zhang, Y.F. Zhang, SiC nanowires synthesized by rapidly heating a mixture of SiO and arc-discharge plasma pretreated carbon black, Nanoscale Res. Lett. 4 (2009) 153-156.

DOI: 10.1007/s11671-008-9216-3

Google Scholar

[11] T.L.Y. Cheung, D.H.L. Ng, Conversion of bamboo to biomorphic composites containing silica and silicon carbide nanowires, J. Am. Ceram. Soc. 90 (2007) 559-564.

DOI: 10.1111/j.1551-2916.2006.01390.x

Google Scholar

[12] C. Vakifahmetoglu, Fabrication and properties of ceramic 1D nanostructures from preceramic polymers: a review, Adv. Appl. Ceram. 110 (2011) 188-204.

DOI: 10.1179/1743676111y.0000000007

Google Scholar

[13] Y.J. Xing, Q.L. Hang, H.F. Yan, et al., Solid-liquid-solid (SLS) growth of coaxial nanocables: silicon carbide sheathed with silicon oxide, Chem. Phys. Lett. 345 (2001) 29-32.

DOI: 10.1016/s0009-2614(01)00768-0

Google Scholar

[14] P. Zhang, X. Li, Microstructures of the silicon carbide nanowires obtained by annealing the mechanically-alloyed amorphous powders, Mater. Charact. 105 (2015) 82-89.

DOI: 10.1016/j.matchar.2015.05.003

Google Scholar

[15] X.C. Li, X.H. Chen, H.H. Song, Preparation of silicon carbide nanowires via a rapid heating process, Mat. Sci. Eng. B-Solid 176 (2011) 87-91.

DOI: 10.1016/j.mseb.2010.09.007

Google Scholar

[16] G.F. Iriarte, Large scale synthesis of silicon nanowires, J. Nanopart Res. (2010).

Google Scholar

[17] S.Z. Deng, Z.S. Wu, J. Zhou, N.S. Xu, R. Chen, J. Chen, Synthesis of silicon carbide nanowires in a catalyst-assisted process, Chem. Phys. Lett. 356 (2002) 511-514.

DOI: 10.1016/s0009-2614(02)00403-7

Google Scholar

[18] S.G. Sundaresan, A.V. Davydov, M.D. Vaudin, et al., Growth of silicon carbide nanowires by a microwave heating-assisted physical vapor transport process using group VIII metal catalysts, Chem. Mater. 19 (2007) 5531-5537.

DOI: 10.1021/cm071213r

Google Scholar

[19] Alloy phase diagrams, Vol 03, ASM Metals Handbook, ASM international.

Google Scholar

[20] B. Gabbitas, P. Cao, S. Raynova, et al., Microstructural evolution during mechanical milling of Ti/Al powder mixture and production of intermetallic TiAl cathode target, J. Mater. Sci. 47 (2012) 1234-1243.

DOI: 10.1007/s10853-011-5886-9

Google Scholar