Effect of Forming Pressure on Microstructure and Mechanical Properties of B4C- SiC-Si Ceramic Composites

Article Preview

Abstract:

B4C-SiC-Si ceramic composites were fabricated based on molten silicon infiltration method. The influence of preforms' forming pressure on the microstructure and mechanical properties of B4C-SiC-Si ceramic composites was studied by X-ray diffraction (XRD), scanning electron microscopy (SEM) and electron universal testing machines, etc. The results showed that the ceramic consists of B4C, B12(C,Si,B)3, SiC and Si phases. The microstructure analysis showed that: the volume percent of free silicon decreased with the increase in forming pressures. The Vikers-hardness of B4C-SiC-Si ceramic composites increased, while the bending strength and fracture toughness both increased initially and then decreased with the increase in forming pressures of which the optimal pressure is 200 MPa. The optimum bending strength, fracture toughness and Vikers-hardness of the obtained B4C-SiC-Si ceramic composites are 319±13 MPa, 4.9±0.1 MPa·m1/2 and 24±1 GPa, respectively. The volume density and open porosity of the obtained B4C-SiC-Si ceramic composites are 2.58 g/cm3 and 0.19 %, respectively.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

152-158

Citation:

Online since:

April 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y.Q. Tan, L. Heng, H.B. Zhang, et al. Fabrication of toughened B4C ceramics with high electrical conductivity using MAX phase as a novel sintering aid, J. Ceram. Int. 42(6) (2016) 7347-7352.

DOI: 10.1016/j.ceramint.2016.01.133

Google Scholar

[2] P. He, S.M. Dong, Y.M. Kan, et al. Microstructure and mechanical properties of B4C-TiB2 ceramics prepared by reaction hot pressing using Ti3SiC2 as additive, J. Ceram. Int. 42(1) (2015) 650-656.

DOI: 10.1016/j.ceramint.2015.08.160

Google Scholar

[3] B.M. Moshtaghioun, D.G. García, A. Domínguez-Rodríguez. High-temperature plastic deformation of spark plasma sintered boron carbide-based ceramics: The case study of B4C-SiC with/without graphite (g), J. J. Eur. Ceram. Soc. 36(5) (2016) 1127-1134.

DOI: 10.1016/j.jeurceramsoc.2015.12.016

Google Scholar

[4] R.J. He, Z.L. Zhou, Z.L. Qu, et al. High temperature bending strength and oxidation behavior of hot-pressed B4C-ZrB2 ceramics with various ZrB2 contents at 1000-1600 °C in air, J. Int. J. Refract. Met. Hard Mater. 57 (2016) 125-133.

DOI: 10.1016/j.ijrmhm.2016.03.005

Google Scholar

[5] J.L. Wang, W.S. Lin, Z.W. Jiang, et al. The preparation and properties of SiCw/B4C ceramics infiltrated with molten silicon, J. Ceram. Int. 40(5) (2014) 6793-6798.

DOI: 10.1016/j.ceramint.2013.12.003

Google Scholar

[6] A. Thuault, S. Marinel, E. Savary, et al. Processing of reaction-bonded B4C-SiC ceramics in a single-mode microwave cavity, J. Ceram. Int. 39(2) (2013) 1215-1219.

DOI: 10.1016/j.ceramint.2012.07.047

Google Scholar

[7] P. Barick, D.C. Jana, N. Thiyagarajan. Effect of particle size on the mechanical properties of reaction bonded boron carbide ceramics, J. Ceram. Int. 39(1) (2013) 763-770.

DOI: 10.1016/j.ceramint.2012.06.089

Google Scholar

[8] P.Y. Huang. Powder Metallurgy Principle, M. Beijing: Metallurgical Industry Press (1997) 173-195.

Google Scholar

[9] J.E. Hilliard, J.W. Cahn. An evaluation of procedures in quantitative metallography for volume-fraction analysis, J. Trans. Metall. Soc. AIME, 221 (1961) 344-352.

Google Scholar

[10] A.L. Yurkov, B.S. Skidan, A.B. Ponomarev. Reaction between boron carbide and silicon, J. Refractories, 28(1) (1987) 90-92.

DOI: 10.1007/bf01386737

Google Scholar

[11] Z.F. Chen, Y.B. Su, Y.B. Cheng. Formation and sintering mechanisms of reaction bonded silicon carbide-boron carbide ceramics, J. Key Eng. Mater. 352 (2007) 207-212.

DOI: 10.4028/www.scientific.net/kem.352.207

Google Scholar

[12] C.P. Zhang, H.Q. Ru, W. Wang, et al. The role of infiltration temperature in the reaction bonding of boron carbide by silicon infiltration, J. J. Am. Ceram. Soc. 97(10) (2014) 3286-3293.

DOI: 10.1111/jace.13085

Google Scholar

[13] A.L. Yurkov, A.M. Starchenko, B.S. Skidan. Reaction sintering of boron carbide, J. Refractories, 30(11-12) (1989) 731-736.

DOI: 10.1007/bf01288282

Google Scholar

[14] W.D. Callister, D.G. Rethwisch. Materials science and engineering: an introduction, M. New York: John Wiley & Sons, Inc. (2007) 412-606.

Google Scholar

[15] S. Hayun, M.P. Darie, N. Frage, et al. The high-strain-rate dynamic response of boron carbide-based ceramics: The effect of microstructure, J. Acta Mater. 58(5) (2010) 1721-1731.

DOI: 10.1016/j.actamat.2009.11.014

Google Scholar

[16] U. Engel, H. Hubner. Strength improvement of cemented carbides by hot isostatic pressing, J. J.Mater. Sci. 13(9)(1978) 2003-(2012).

DOI: 10.1007/bf00552908

Google Scholar

[17] P. Jannotti, G. Subhash, J. Zheng, et al. Measurement of microscale residual stresses in multi- phase ceramic composites using Raman spectroscopy, Acta Mater. 129 (2017) 482-491.

DOI: 10.1016/j.actamat.2017.03.015

Google Scholar

[18] F. Thevenot. Boron carbide-A comprehensive review, J. J. Eur. Ceram. Soc. 6(4) (1990) 205-225.

Google Scholar

[19] N.E. Dowling. Mechanical behavior of materials: engineering methods for deformation, fracture, and fatigue M. Upper Saddle River: Pearson Education, Inc. (2007) 152-154.

Google Scholar

[20] M.W. Barsoum. Fundamentals of Ceramics M. New York: The McGraw-Hill Companies Inc (1997) 201-205.

Google Scholar

[21] S.R. Choi, W.A. Sanders, J.A. Salem, et al. Young's modulus, strength and fracture toughness as a function of density of in situ toughened silicon nitride with 4 wt% scandia, J. J. Mater. Sci. Lett. 14(4) (1995) 276-278.

DOI: 10.1007/bf00275622

Google Scholar

[22] R. Chaim, M. Hefetz. Effect of grain size on elastic modulus and hardness of nanocrystalline ZrO2-3 wt%Y2O3 ceramic, J. J. Mater. Sci. 39(9) (2004) 3057-3061.

DOI: 10.1023/b:jmsc.0000025832.93840.b0

Google Scholar

[23] S. Hayun, H. Dilman, M.P. Dariel, et al. The effect of carbon source on the microstructure and the mechanical properties of reaction bonded boron carbide, J. Adv. Sinter. Sci. Technol. Ceram. Trans. (2010) 27-39.

DOI: 10.1002/9780470599730.ch4

Google Scholar

[24] A.S. Namini, S.N.S. Gogani, M.S. Asl, et al. Microstructural development and mechanical properties of hot pressed SiC reinforced TiB2 based ceramic, J. Int. J. Refract. Met. Hard Mater. 51 (2015) 169-179.

DOI: 10.1016/j.ijrmhm.2015.03.014

Google Scholar

[25] S. Hayun, H. Dilman, M.P. Dariel, et al. The effect of aluminum on the microstructure and phase composition of boron carbide infiltrated with silicon, J. Mater. Chem. Phys. 118(2) (2009) 490-495.

DOI: 10.1016/j.matchemphys.2009.08.023

Google Scholar