Mesenchymal Stem Cells Adhesion on Micro-to-Nano-Scaled Hierarchical Ti Implants Fabricated by Powder Metallurgy and Anodization

Abstract:

Article Preview

The osseointegration of titanium (Ti) implants highly depends on their surface properties, including roughness, wettability and composition. Ti surfaces with micron-scale roughness have demonstrated more rapid bone apposition compared with polished ones. Besides, Ti implants with nanostructured surface also exhibit better cell adhesion and proliferation behavior. However, the optimal surface for bone regeneration is still unknown, partly due to the difficulty in fabricating surfaces with highly reproducible micron-and nanotopography. In this study, Ti implants with two hierarchies of roughness were fabricated by powder metallurgy, followed by anodization treatment to obtain self-assembled TiO2 nanotubes on the micro-roughened surface. X-ray diffraction (XRD), scanning electron microscopy (SEM), 3D Laser Scanning Microscope (3D LSM), and fluorescence microscope were used to investigate the properties of the samples. Ra of the powder metallurgy surface was about 5 μm, while, nanotubes of around 100 nm in diameter were observed after the anodization process. Compared with the reference samples, i.e., the ones with either smooth or single-level-structure surfaces, the ones with micro-to-nanoscaled hierarchical topography exhibited lower contact angle, higher protein adsorption and significantly improved mesenchymal stem cells (MSCs) early adhesion.

Info:

Periodical:

Edited by:

Huiping Tang, Ma Qian, Yong Liu, Peng Cao and Gang Chen

Pages:

70-79

Citation:

D. P. Zhao et al., "Mesenchymal Stem Cells Adhesion on Micro-to-Nano-Scaled Hierarchical Ti Implants Fabricated by Powder Metallurgy and Anodization", Key Engineering Materials, Vol. 770, pp. 70-79, 2018

Online since:

May 2018

Export:

Price:

$38.00

* - Corresponding Author

[1] M. Geetha, A. K. Singh, R. Asokamani, A. K. Gogia, Ti based biomaterials, the ultimate choice for orthopaedic implants - A review, Progress in Materials Science, 54 (2009) 397-425.

DOI: https://doi.org/10.1016/j.pmatsci.2008.06.004

[2] Z. Jia, P. Xiu, M. Li, X. Xu, Y. Shi, Y. Cheng, S. Wei, Y. Zheng, T. Xi, H. Cai, Z. Liu, Bioinspired anchoring AgNPs onto micro-nanoporous TiO2 orthopedic coatings: Trap-killing of bacteria, surface-regulated osteoblast functions and host responses, Biomaterials, 75 (2016).

DOI: https://doi.org/10.1016/j.biomaterials.2015.10.035

[3] Guocheng Wang, Sergio Moya, ZuFu Lu, Danijela Gregurec, H. Zreiqat, Enhancing orthopedic implant bioactivity: refining the nanotopography, Nanomedicine, 10 (2015) 1327-1341.

DOI: https://doi.org/10.2217/nnm.14.216

[4] S. Li, J. Ni, X. Liu, X. Zhang, S. Yin, M. Rong, Z. Guo, L. Zhou, Surface characteristics and biocompatibility of sandblasted and acid-etched titanium surface modified by ultraviolet irradiation: An in vitro study, Journal of Biomedical Materials Research Part B: Applied Biomaterials, 100B (2012).

DOI: https://doi.org/10.1002/jbm.b.32727

[5] G.L. Le, A. Soueidan, P. Layrolle, Y. Amouriq, Surface treatments of titanium dental implants for rapid osseointegration, Dental Materials, 23 (2007) 844-854.

DOI: https://doi.org/10.1016/j.dental.2006.06.025

[6] C. Demangel, D. Auzène, M. Vayssade, J.L. Duval, P. Vigneron, M.D. Nagel, J.C. Puippe, Cytocompatibility of titanium metal injection molding with various anodic oxidation post-treatments, Materials Science & Engineering C, 32 (2012) 1919-(1925).

DOI: https://doi.org/10.1016/j.msec.2012.05.037

[7] C.-J. Ivanoff, G. Widmark, C. Hallgren, L. Sennerby, A. Wennerberg, Histologic evaluation of the bone integration of TiO2 blasted and turned titanium microimplants in humans, Clinical Oral Implants Research, 12 (2001) 128-134.

DOI: https://doi.org/10.1034/j.1600-0501.2001.012002128.x

[8] S. Oh, K.S. Brammer, Y.S.J. Li, D. Teng, A.J. Engler, S. Chien, S. Jin, Stem cell fate dictated solely by altered nanotube dimension, Proceedings of the National Academy of Sciences, 106 (2009) 2130-2135.

DOI: https://doi.org/10.1073/pnas.0813200106

[9] S.A. Cho, K.T. Park, The removal torque of titanium screw inserted in rabbit tibia treated by dual acid etching, Biomaterials, 24 (2003) 3611.

DOI: https://doi.org/10.1016/s0142-9612(03)00218-7

[10] Y. Shibata, Y. Tanimoto, A review of improved fixation methods for dental implants. Part I: Surface optimization for rapid osseointegration, Journal of Prosthodontic Research, 59 (2015) 20-33.

DOI: https://doi.org/10.1016/j.jpor.2014.11.007

[11] F.H. Froes, Q. Ma, A perspective on the future of titanium powder metallurgy, Butterworth-Heinemann, Waltham, MA, USA–Oxford, UK, (2015).

[12] D. Zhao, K. Chang, T. Ebel, M. Qian, R. Willumeit, M. Yan, F. Pyczak, Microstructure and mechanical behavior of metal injection molded Ti-Nb binary alloys as biomedical material, Journal of the Mechanical Behavior of Biomedical Materials, 28 (2013).

DOI: https://doi.org/10.1016/j.jmbbm.2013.08.013

[13] V.V. Divya Rani, K. Manzoor, D. Menon, N. Selvamurugan, S.V. Nair, The design of novel nanostructures on titanium by solution chemistry for an improved osteoblast response, Nanotechnology, 20 (2009) 195101.

DOI: https://doi.org/10.1088/0957-4484/20/19/195101

[14] N. Tsukimura, T. Ueno, F. Iwasa, H. Minamikawa, Y. Sugita, K. Ishizaki, T. Ikeda, K. Nakagawa, M. Yamada, T. Ogawa, Bone integration capability of alkali- and heat-treated nanobimorphic Ti–15Mo–5Zr–3Al, Acta Biomaterialia, 7 (2011) 4267-4277.

DOI: https://doi.org/10.1016/j.actbio.2011.08.016

[15] T. Ogawa, L. Saruwatari, K. Takeuchi, H. Aita, N. Ohno, Ti Nano-nodular Structuring for Bone Integration and Regeneration, Journal of Dental Research, 87 (2008) 751-756.

DOI: https://doi.org/10.1177/154405910808700809

[16] K.S. Brammer, C.J. Frandsen, S. Jin, TiO2 nanotubes for bone regeneration, Trends in Biotechnology, 30 (2012) 315-322.

DOI: https://doi.org/10.1016/j.tibtech.2012.02.005

[17] L. Zhao, L. Liu, Z. Wu, Y. Zhang, P.K. Chu, Effects of micropitted/nanotubular titania topographies on bone mesenchymal stem cell osteogenic differentiation, Biomaterials, 33 (2012) 2629.

DOI: https://doi.org/10.1016/j.biomaterials.2011.12.024

[18] N. Maegawa, K. Kawamura, M. Hirose, H. Yajima, Y. Takakura, H. Ohgushi, Enhancement of osteoblastic differentiation of mesenchymal stromal cells cultured by selective combination of bone morphogenetic protein-2 (BMP-2) and fibroblast growth factor-2 (FGF-2), Journal of Tissue Engineering & Regenerative Medicine, 1 (2007).

DOI: https://doi.org/10.1002/term.41

[19] J. He, W. Zhou, X. Zhou, X. Zhong, X. Zhang, P. Wan, B. Zhu, W. Chen, The anatase phase of nanotopography titania plays an important role on osteoblast cell morphology and proliferation, Journal of Materials Science: Materials in Medicine, 19 (2008).

DOI: https://doi.org/10.1007/s10856-008-3505-3

[20] G.K. Mor, O.K. Varghese, M. Paulose, K. Shankar, C.A. Grimes, A review on highly ordered, vertically oriented TiO2 nanotube arrays: Fabrication, material properties, and solar energy applications, Solar Energy Materials and Solar Cells, 90 (2006).

DOI: https://doi.org/10.1016/j.solmat.2006.04.007

[21] D. Xu, W. Yang, Y. Hu, Z. Luo, J. Li, Y. Hou, Y. Liu, K. Cai, Surface functionalization of titanium substrates with cecropin B to improve their cytocompatibility and reduce inflammation responses, Colloids and Surfaces B: Biointerfaces, 110 (2013).

DOI: https://doi.org/10.1016/j.colsurfb.2013.04.050

[22] J.I. Rosales-Leal, M.A. Rodríguez-Valverde, G. Mazzaglia, P.J. Ramón-Torregrosa, L. Díaz-Rodríguez, O. García-Martínez, M. Vallecillo-Capilla, C. Ruiz, M.A. Cabrerizo-Vílchez, Effect of roughness, wettability and morphology of engineered titanium surfaces on osteoblast-like cell adhesion, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 365 (2010).

DOI: https://doi.org/10.1016/j.colsurfa.2009.12.017

[23] Y. Yang, R. Cavin, J.L. Ong, Protein adsorption on titanium surfaces and their effect on osteoblast attachment, Journal of Biomedical Materials Research Part A, 67A (2003) 344-349.

DOI: https://doi.org/10.1002/jbm.a.10578

[24] G.B. Sigal, M. Mrksich, G.M. Whitesides, Effect of Surface Wettability on the Adsorption of Proteins and Detergents, Journal of the American Chemical Society, 120 (1998) 3464-3473.

DOI: https://doi.org/10.1021/ja970819l

[25] P. Roach, D. Farrar, C.C. Perry, Surface Tailoring for Controlled Protein Adsorption:  Effect of Topography at the Nanometer Scale and Chemistry, Journal of the American Chemical Society, 128 (2006) 3939-3945.

DOI: https://doi.org/10.1021/ja056278e