Effect of Electrolyte Concentration on Electrochemical Properties of Zinc Hexacyanoferrate Electrode in Zinc-Ion Batteries

Article Preview

Abstract:

The aqueous rechargeable zinc ion battery (ARZIB) system has been actively studied in the field of energy storage. Prussian blue analogues (PBAs) are considered effective cathode materials in the ARZIB system. In our previous study, Zn(NO3)2 solutions of different concentrations were used as electrolytes in an ARZIB system with a zinc hexacyanoferrate (ZnHCF) electrode. And the effect of electrolyte concentration on the electrochemical performance was studied. In this study, the effect of electrolyte concentration was demonstrated through electrochemical tests and Raman analysis. Charge/discharge tests were conducted at different electrolyte concentrations. And electrochemical performance degradation was observed above a certain electrolyte concentration. This effect was due to the strong interaction between the zinc cations and the nitrate anions, confirmed by the Raman spectroscopy analysis of the Zn(NO3)2 electrolyte.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

133-137

Citation:

Online since:

July 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P. Nie, L. Shen, H. Luo, B. Ding, G. Xu, J. Wang and X. Zhang, Prussian blue analogues: a new class of anode materials for lithium ion batteries, J. Mater. Chem. A. 2 (2014) 5852-5857.

DOI: 10.1039/c4ta00062e

Google Scholar

[2] A. A. Karyakin, Prussian Blue and Its Analogues: Electrochemistry and Analytical Applications, Electroanalysis. 13 (2001) 813-819.

DOI: 10.1002/1521-4109(200106)13:10<813::aid-elan813>3.0.co;2-z

Google Scholar

[3] C. Xu, B. Li, H. Du and F. Kang, Energetic Zinc Ion Chemistry: The Rechargeable Zinc Ion Battery, Angew. Chem. Int. Ed. 51 (2012) 933-935.

DOI: 10.1002/anie.201106307

Google Scholar

[4] B. Lee, C. S. Yoon, H. R. Lee, K. Y. Chung, B. W. Cho and S. H. Oh, Electrochemically-induced reversible transition from the tunneled to layered polymorphs of manganese dioxide, Sci. Rep. 4 (2014) 6066-6073.

DOI: 10.1038/srep06066

Google Scholar

[5] L. Chen, H. Shao, X. Zhou, G. Liu, J. Jiang and Z. Liu, Water-mediated cation intercalation of open-framework indium hexacyanoferrate with high voltage and fast kinetics, Nat. Commun. 7 (2016) 11982-11991.

DOI: 10.1038/ncomms11982

Google Scholar

[6] C. J. Du, F. X. Bu, D. M. Jiang, Q. H. Zhang and J. S. Jiang, Prussian blue analogue K2Zn3[Fe(CN)6]2 quasi square microplates: large-scale synthesis and their thermal conversion into a magnetic nanoporous ZnFe2−xO4–ZnO composite, CrystEngComm. 15 (2013).

DOI: 10.1039/c3ce41753k

Google Scholar

[7] S. Wu, X. Shen, H. Zhou, G. Zhu, R. Wang, Z. Ji, K. Chen and C. Chen, Morphological synthesis of Prussian blue analogue Zn3[Fe(CN)6]2·xH2O micro-/nanocrystals and their excellent adsorption performance toward methylene blue, J. Colloid Interf. Sci. 464 (2016).

DOI: 10.1016/j.jcis.2015.11.036

Google Scholar

[8] M. Pasta, R. Y. Wang, R. Ruffo, R. Qiao, H. W. Lee, B. Shyam, M. Guo, Y. Wang, L. A. Wray, W. Yang, M. F. Toneye and Y. Cui, Manganese–cobalt hexacyanoferrate cathodes for sodium-ion batteries, J. Mater. Chem. A. 4 (2016) 4211-4223.

DOI: 10.1039/c5ta10571d

Google Scholar

[9] X. Sun, V. Duffort and L. F. Nazar, Prussian Blue Mg-Li Hybrid Batteries, Adv. Sci. 3 (2016) 1600044-1600050.

DOI: 10.1002/advs.201600044

Google Scholar

[10] R. Y. Wang, B. Shyam, K. H. Stone, J. N. Weker, M. Pasta, H. W. Lee, M. F. Toney and Y. Cui, Reversible Multivalent (Monovalent, Divalent, Trivalent) Ion Insertion in Open Framework Materials, Adv. Energy Mater. 5 (2015) 1401869-1401878.

DOI: 10.1002/aenm.201401869

Google Scholar

[11] L. Zhang, L. Chen, X. Zhou and Z. Liu, Towards High-Voltage Aqueous Metal-Ion Batteries Beyond 1.5 V: The Zinc/Zinc Hexacyanoferrate System, Adv. Energy Mater. 5 (2015) 1400930-1400934.

DOI: 10.1002/aenm.201400930

Google Scholar

[12] Z. Hou, X. Zhang, X. Li, Y. Zhu, J. Liang and Y Qian, Surfactant widens the electrochemical window of an aqueous electrolyte for better rechargeable aqueous sodium/zinc battery, J. Mater. Chem. A. 5 (2017) 730-738.

DOI: 10.1039/c6ta08736a

Google Scholar

[13] H. W. Lee, R. Y. Wang, M. Pasta, S. W. Lee, N. Liu and Y. Cui, Manganese hexacyanomanganate open framework as a high-capacity positive electrode material for sodium-ion batteries, Nat. Commun. 5 (2014) 5280-5285.

DOI: 10.1038/ncomms6280

Google Scholar

[14] C. D. Wessells, S. V. Peddada, R. A. Huggins and Y. Cui, Nickel Hexacyanoferrate Nanoparticle Electrodes For Aqueous Sodium and Potassium Ion Batteries Nano Lett. 11 (2011) 5421-5425.

DOI: 10.1021/nl203193q

Google Scholar

[15] C. H. Lee and S. K. Jeong, A Novel Superconcentrated Aqueous Electrolyte to Improve the Electrochemical Performance of Calcium-ion Batteries, Chem. Lett. 45 (2016) 1447-1449.

DOI: 10.1246/cl.160769

Google Scholar

[16] A. Hazza, D. Pletcher and R. Wills, A novel flow battery: A lead acid battery based on an electrolyte with soluble lead(II) Part I. Preliminary studies, Phys. Chem. Chem. Phys. 6 (2004) 1773-1778.

DOI: 10.1039/b401115e

Google Scholar

[17] D. Kim, C. Lee and S. Jeong, A concentrated electrolyte for zinc hexacyanoferrate electrodes in aqueous rechargeable zinc-ion batteries, Mater. Sci. Eng. 284 (2017) 012001-012006.

DOI: 10.1088/1757-899x/284/1/012001

Google Scholar

[18] R. Y. Wang, C. D. Wessells, R. A. Huggins and Y. Cui, Highly Reversible Open Framework Nanoscale Electrodes for Divalent Ion Batteries, Nano Lett. 13 (2013) 5748-5752.

DOI: 10.1021/nl403669a

Google Scholar

[19] D. E. Irish and T. Jarv, Vibrational Spectral Studies of Solutions at Elevated Temperatures and Pressures. IV. Raman Spectra of Aqueous Zinc Nitrate Solutions, Appl. Spectrosc. 37 (1983) 50-55.

DOI: 10.1366/0003702834634109

Google Scholar

[20] Y. K. Sze and D. E. Irish, Vibrational Spectral Studies of Ion-Ion and Ion-Solvent Interactions. I. Zinc Nitrate in Water , J. Solution Chem. 7 (1978) 395-415.

DOI: 10.1007/bf00646111

Google Scholar

[21] Y. Ikushima, N Saito and M Arai, Raman Spectral Studies of Aqueous Zinc Nitrate Solution at High Temperatures and at a High Pressure of 30 Mpa, J. Phys. Chem. B. 102, (1998) 3029-3035.

DOI: 10.1021/jp980458b

Google Scholar