Thermoelectric Properties of Bi2Te3-ySey Bulk Materials Synthesized by Melting-Grinding Process

Article Preview

Abstract:

The Bi–Te thermoelectric system shows an excellent figure of merit (ZT) near room temperature. Research on increasing the ZT value for n‑type Bi–Te is imperative because the thermoelectric properties of this compound are inferior to those of the p-type material. For this purpose, n-type Bi2Te3-ySey powders with various amounts of Se dopant (0.3 ≤ y ≤ 0.6) were synthesized by a vacuum melting-grinding process to improve the physical properties. The ZT value of the sintered bodies was investigated in the temperature range of 298–423 K with regard to the electrical and thermal characteristics. As the Se content increased, the electrical conductivity decreased owing to a reduction in the carrier concentration, which improved the overall value of ZT. The thermal conductivity clearly decreased as the Se content increased in the temperature range of 298–373 K due to increased alloy scattering, as well as a reduction in the lattice thermal conductivity caused by crystal grain boundary scattering. At room temperature, Bi2Te2.7Se0.3 (y = 0.3) exhibited the highest ZT of 0.85. At increased temperatures, the ZT value was highest for Bi2Te2.55Se0.45 (y = 0.45), indicating that the optimal effect of the Se dopants varies depending on the temperature range.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

145-151

Citation:

Online since:

July 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Majumdar, Thermoelectricity in semiconductor nanostructures, Science 303 (2004) 777-778.

DOI: 10.1126/science.1093164

Google Scholar

[2] C. B. Vining, Semiconductors are cool, Nature 413 (2001) 577-578.

Google Scholar

[3] H. J. Goldsmid, Bismuth Telluride and Its Alloys as Materials for Thermoelectric Generation, Materials 7 (2014) 2577-2592.

DOI: 10.3390/ma7042577

Google Scholar

[4] B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee, X. Chen, J. Liu, M. S. Dresselhaus, G. Chen, Z. Ren, High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys, Science 320 (2008).

DOI: 10.1126/science.1156446

Google Scholar

[5] S. J. Hong, B. S. Chun, Microstructure and thermoelectric properties of extruded n-type 95%Bi2Te2–5%Bi2Se3 alloy along bar length, Mater. Sci. Eng. A 356 (2003) 345-351.

DOI: 10.1016/s0921-5093(03)00147-3

Google Scholar

[6] Y. Du, K. F. Cai, H. Li and B. J. An, The influence of sintering temperature on the microstructure and thermoelectric properties of n-type Bi2Te3−xSex nanomaterials, J. Electron. Mater. 40 (2011) 518-522.

DOI: 10.1007/s11664-010-1424-9

Google Scholar

[7] S. Wang, W. Xie, H. Li and X. Tang, Enhanced performances of melt spun Bi2(Te,Se)3 for n-type thermoelectric legs, Intermetallics 19 (2011) 1024-1031.

DOI: 10.1016/j.intermet.2011.03.006

Google Scholar

[8] F. Li, X. Huang, Z. Sun, J. Ding, J. Jiang, W. Jiang and L. Chen, Enhanced thermoelectric properties of n-type Bi2Te3-based nanocomposite fabricated by spark plasma sintering, J. Alloys Compd. 509 (2001) 4769-4773.

DOI: 10.1016/j.jallcom.2011.01.155

Google Scholar

[9] P. F. P. Poudeu, J. D'Angelo, A. Downey, J. L. Short, T. P. Hogan and M. G. Kanatzidis, High Thermoelectric Figure of Merit and Nanostructuring in Bulk p‐type Na1−xPbmSbyTem+2, Angew. Chem. 118 (2006) 3919-3923.

DOI: 10.1002/ange.200600865

Google Scholar

[10] Y. S. Lim, S. -M. Wi, G. G. Lee, Synthesis of n-type Bi2Te1-xSex compounds through oxide reduction process and related thermoelectric properties, J. Eur. Ceram. Soc. 37 (2017) 3361-3366.

DOI: 10.1016/j.jeurceramsoc.2017.04.020

Google Scholar

[11] S. T. Han, P. Rimal, C. H. Lee, H. S. Kim, Y. Sohn and S. J. Hong, Enhanced thermoelectric cooling properties of Bi2Te3−xSex alloys fabricated by combining casting, milling and spark plasma sintering, Intermetallics 78 (2016) 42-49.

DOI: 10.1016/j.intermet.2016.08.006

Google Scholar

[12] Z. Rong, X. Fan, F. Yang, X. Cai, X. Han and G. Li, Microwave activated hot pressing: A new opportunity to improve the thermoelectric properties of n-type Bi2Te3-xSex bulks, Mater. Res. Bull. 83 (2016) 122-127.

DOI: 10.1016/j.materresbull.2016.05.030

Google Scholar

[13] H. Scherrer, R. Martin-Lopez, B. Lenoir, A. Dauscher, S. Scherrer, Thermoelectric materials of p and n type from the (Bi,Sb,Te) phase diagram, Proc. 20th Int. Conf. Thermoelectr. (2001) 13-17.

DOI: 10.1109/ict.2001.979606

Google Scholar

[14] O. Yamashita, S. Tomiyoshi and K. Makita, Bismuth telluride compounds with high thermoelectric figures of merit, J. Appl. Phys. 93 (2003) 368-374.

DOI: 10.1063/1.1525400

Google Scholar

[15] A. A. Joraide, Thermoelectric properties of fine-grained sintered (Bi2Te3)25-(Sb2Te3)75 p-type solid solution, J. Mater. Sci. 30 (1995) 744-748.

DOI: 10.1007/bf00356337

Google Scholar

[16] D. Li, X. Y. Qin, Y. C. Dou, X. Y. Li, R. R. Sun, Q. Q. Wang, L. L. Li, H. X. Xin, N. Wang, N. N. Wang, C. J. Song, Y. F. Liu and J. Zhang, Thermoelectric properties of hydrothermally synthesized Bi2Te3−xSex nanocrystals, Scr. Mater. 67 (2012).

DOI: 10.1016/j.scriptamat.2012.04.005

Google Scholar

[17] D. Vasilevskiy, A. Sami, J. M. Simard and R. Masut, Influence of Se on the electron mobility in extruded Bi2(Te1−xSex)3 (x≤0. 125) thermoelectric alloys, J. Appl. Phys. 92 (2002) 2610.

DOI: 10.1063/1.1499521

Google Scholar

[18] S. Wang, G. Tan, W. Xie, G. Zheng, H. Li, J. Yang, X. Tang, Enhanced thermoelectric properties of Bi2(Te1−xSex)3-based compounds as n-type legs for low-temperature power generation, J. Mater. Chem. 22 (2012) 20943-20951.

DOI: 10.1039/c2jm34608g

Google Scholar

[19] J. Horák, Z. Stary, P. Lošťák, J. Pancíř, Anti-site defects in n-Bi2Se3 crystals, J. Phys. Chem. Solids. 51 (1990) 1353-1360.

DOI: 10.1016/0022-3697(90)90017-a

Google Scholar

[20] H. J. Yu, M. Jeong, Y. S. Lim, W. S. Seo, O. J. Kwon, C. H. Park, H. J. Hwang, Effects of Cu addition on band gap energy, density of state effective mass and charge transport properties in Bi2Te3 composites, RSC Adv. 4 (2014) 43811-43814.

DOI: 10.1039/c4ra07134d

Google Scholar

[21] P. Puneet, R. Podila, M. Karakaya, S. Zhu, J. He, T. M. Tritt, M. S. Dresselhaus, A. M. Rao, Preferential scattering by interfacial charged defects for enhanced thermoelectric performance in few-layered n-type Bi2Te3. Sci. Rep. 3 (2013) 3212.

DOI: 10.1038/srep03212

Google Scholar

[22] D. M. Rowe, Handbook of Thermoelectrics, CRC Press, New York, (1995).

Google Scholar

[23] K. Uemura and I. Nishida, Thermoelectric Semiconductor and Their Application, Nikkan-Kogyo Shinbun Press, Tokyo, (1988).

Google Scholar