[1]
K. Ellmer, Past achievements and future challenges in the development of optically transparent electrodes, Nat. Photonics 6 (2012) 809–817.
DOI: 10.1038/nphoton.2012.282
Google Scholar
[2]
S. De, T. M. Higgins, P. E. Lyons et al., Silver nanowire networks as flexible, transparent, conducting films: extremely high DC to optical conductivity ratios, ACS Nano 3 (2009) 1767–1774.
DOI: 10.1021/nn900348c
Google Scholar
[3]
V. Muramba, M. Mageto, F. Gaitho et al., Structural and Optical Characterization of Tin Oxide Codoped with Aluminum and Sulphur, Am. J. Mater. Sci. 5 (2015) 23-30.
Google Scholar
[4]
R. Rathmell and B. J. Wiley, Synthesis and Coating of Long, Thin Copper Nanowires to Make Flexible, Transparent Conducting Films on Plastic Substrate, Adv. Mater. 23 (2011) 4798-4803.
DOI: 10.1002/adma.201102284
Google Scholar
[5]
Mayousse, C. Celle, A. Carella and J-P. Simonato, Synthesis and purification of long copper nanowires. Application to high performance flexible transparent electrode with and without PEDOT: PSS, Nano Res. 7 (2014) 315-324.
DOI: 10.1007/s12274-013-0397-4
Google Scholar
[6]
S. Li, Y. Chen, L. Huang and D. Pan, Large-Scale Synthesis of Well-Dispersed Copper Nanowires in an Electric Pressure cooker and Their Application in Transparent and Conductive Networks, Inorg Chem. 53 (2014) 4440-4444.
DOI: 10.1021/ic500094b
Google Scholar
[7]
D. Zhang, R. Wang, M. Wen, D. Weng, X. Cui, J. Sun, H. Li and Y. Lu,, Synthesis of ultralong copper nanowires for high performance transparent electrodes, J Am Chem Soc. 134 (2012) 14283.
DOI: 10.1021/ja3050184
Google Scholar
[8]
Choi, H.; Park, S.-H. Seedless Growth of Free-Standing Copper Nanowires by Chemical Vapor Deposition. J. Am.Chem. Soc. 126 (2004) 6248–9.
DOI: 10.1021/ja049217+
Google Scholar
[9]
Gao, T.; Meng, G.; Wang, Y.; Sun, S.; Zhang, L.Electrochemical Synthesis of Copper Nanowires. J. Phys.Condens. Matter 14 (2002) 355–363.
DOI: 10.1088/0953-8984/14/3/306
Google Scholar
[10]
Zhao, Y.; Zhang, Y.; Li, Y.; Yan, Z. Soft Synthesis of Single-Crystal Copper Nanowires of Various Scales. NewJ. Chem. 36 (2012) 130.
Google Scholar
[11]
Guo, H. Z.; Lin, N.; Chen, Y. Z.; Wang, Z. W.; Xie, Q. S.; Zheng, T. C.; Gao, N.; Li, S. P.; Kang, J.; Cai, D. J. et al. Copper nanowires as fully transparent conductive electrodes. Sci. Rep. 3 (2013) 2323.
DOI: 10.1038/srep02323
Google Scholar
[12]
Choi, H.; Park, S.-H. Seedless growth of free-standing copper nanowires by chemical vapor deposition. J. Am. Chem. Soc. 126 (2004) 6248–6249.
DOI: 10.1021/ja049217+
Google Scholar
[13]
Zhao, Y. X.; Zhang, Y.; Li, Y. P.; Yan, Z. F. Soft synthesis of single-crystal copper nanowires of various scales. New J. Chem. 36 (2012) 130–138.
DOI: 10.1039/c1nj20800d
Google Scholar
[14]
Rathmell, A. R.; Bergin, S. M.; Hua, Y. L.; Li, Z. Y.; Wiley, B. J. The growth mechanism of copper nanowires and their properties in flexible, transparent conducting films. Adv. Mater. 22 (2010) 3558–3563.
DOI: 10.1002/adma.201000775
Google Scholar
[15]
Ye, S. R.; Rathmell, A. R.; Stewart, I. E.; Ha, Y. C.; Wilson, A. R.; Chen, Z. F.; Wiley, B. J. A rapid synthesis of high aspect ratio copper nanowires for high-performance transparent conducting films. Chem. Commun. 50 (2014) 2562–2564.
DOI: 10.1039/c3cc48561g
Google Scholar
[16]
Chen, J. Y.; Zhou, W. X.; Chen, J.; Fan, Y.; Zhang, Z. Q.; Huang, Z. D.; Feng, X. M.; Mi, B. X.; Ma, Y. W.; Huang, W. Solution-processed copper nanowire flexible transparent electrodes with PEDOT: PSS as binder, protector and oxidelayer scavenger for polymer solar cells. Nano Res. 8 (2015).
DOI: 10.1007/s12274-014-0583-z
Google Scholar
[17]
D. Zhang, R. Wang, M. Wen, D. Weng, X. Cui, J. Sun, H. Li and Y. Lu,, Synthesis of ultralong copper nanowires for high performance transparent electrodes, J Am Chem Soc. 134 (2012) 14283.
DOI: 10.1021/ja3050184
Google Scholar
[18]
M. Tan and M. D. L. Balela, Electrochemical Investigation of the Growth of Copper Nanowires in the Presence of Ethylenediamine through Mixed Potential, J. Electrochem. Soc., 164 (2017) 7.
DOI: 10.1149/2.0491707jes
Google Scholar
[19]
B. Wiley, Y. Sun, and Y. Xia, Synthesis of silver nanostructures with controlled shapes and properties, Acc. Chem. Res. 40 (2007) 1067-1076.
DOI: 10.1021/ar7000974
Google Scholar
[20]
N. de Guzman and M. D. L. Balela, Growth of Ultralong Ag Nanowires by Electroless Deposition in Hot Ethylene Glycol for Flexible Transparent Conducting Electrodes, J. Nanomater, (2017).
DOI: 10.1155/2017/7896094
Google Scholar
[21]
M. Tan and M. D. Balela, Oleylamine Assisted Synthesis of Ultralong Copper Nanowires, MATEC Web of Conferences, 27 (2015), 03003.
DOI: 10.1051/matecconf/20152703003
Google Scholar
[22]
M. Tan and M. D. L. Balela, One-pot synthesis of high aspect ratio of copper nanowires in aqueous solution, Adv. Mater. Res. 1119 (2015) 34-37.
DOI: 10.4028/www.scientific.net/amr.1119.34
Google Scholar
[23]
M. Tan, L. de Jesus, K. L. Amores, E. Datu, and M. D. L. Balela, Electroless Deposition of Copper Nanostructures in Aqueous Solution, Adv. Mater. Res. 1043 (2014) 114-118.
DOI: 10.4028/www.scientific.net/amr.1043.114
Google Scholar
[24]
R. Rathmell, S. M. Bergin, Y.-L. Hua, Z.-Y. Li and B. J. Wiley, The growth mechanism of copper nanowires and their properties in flexible, transparent conducting films, Adv. Mater. 22 (2010) 3558.
DOI: 10.1002/adma.201000775
Google Scholar
[25]
Z.Jiang, Y.Tian and S. Ding, Synthesis and Characterization of ultra-long and pencil-like copper nanowires with a penta-twinned structure by hydrothermal method, Mater Lett. 136 (2014) 310–313.
DOI: 10.1016/j.matlet.2014.08.033
Google Scholar
[26]
C.R. Chu, C. Lee et al., Fabrication of sintering-free flexible copper nanowire/polymer composite transparent electrodes with enhanced chemical and mechanical stability, Nano Res. 9,7 (2017) 2162-2173.
DOI: 10.1007/s12274-016-1105-y
Google Scholar