Characterization of the Mechanical Integrity of Cu Nanowire-Based Transparent Conducting Electrode

Article Preview

Abstract:

Smooth Cu nanowires were synthesized in a dual surfactant hydrothermal process using oleylamine and oleic acid. The Cu nanowires have a mean diameter of 82.3 nm and lengths >300 μm. Cu nanowire based transparent conducting electrodes were successfully fabricated with a decreased sheet resistance of 3.479 to 1.04 kΩ/sq in an increasing nanowire density with a transmittance from 94-80 %. The fabricated transparent electrode exhibits good mechanical stability with high flexibility even after 50 bending cycles. This indicates strong adhesion of the Cu nanowires on the substrate.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

132-138

Citation:

Online since:

August 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K. Ellmer, Past achievements and future challenges in the development of optically transparent electrodes, Nat. Photonics 6 (2012) 809–817.

DOI: 10.1038/nphoton.2012.282

Google Scholar

[2] S. De, T. M. Higgins, P. E. Lyons et al., Silver nanowire networks as flexible, transparent, conducting films: extremely high DC to optical conductivity ratios, ACS Nano 3 (2009) 1767–1774.

DOI: 10.1021/nn900348c

Google Scholar

[3] V. Muramba, M. Mageto, F. Gaitho et al., Structural and Optical Characterization of Tin Oxide Codoped with Aluminum and Sulphur, Am. J. Mater. Sci. 5 (2015) 23-30.

Google Scholar

[4] R. Rathmell and B. J. Wiley, Synthesis and Coating of Long, Thin Copper Nanowires to Make Flexible, Transparent Conducting Films on Plastic Substrate, Adv. Mater. 23 (2011) 4798-4803.

DOI: 10.1002/adma.201102284

Google Scholar

[5] Mayousse, C. Celle, A. Carella and J-P. Simonato, Synthesis and purification of long copper nanowires. Application to high performance flexible transparent electrode with and without PEDOT: PSS, Nano Res. 7 (2014) 315-324.

DOI: 10.1007/s12274-013-0397-4

Google Scholar

[6] S. Li, Y. Chen, L. Huang and D. Pan, Large-Scale Synthesis of Well-Dispersed Copper Nanowires in an Electric Pressure cooker and Their Application in Transparent and Conductive Networks, Inorg Chem. 53 (2014) 4440-4444.

DOI: 10.1021/ic500094b

Google Scholar

[7] D. Zhang, R. Wang, M. Wen, D. Weng, X. Cui, J. Sun, H. Li and Y. Lu,, Synthesis of ultralong copper nanowires for high performance transparent electrodes, J Am Chem Soc. 134 (2012) 14283.

DOI: 10.1021/ja3050184

Google Scholar

[8] Choi, H.; Park, S.-H. Seedless Growth of Free-Standing Copper Nanowires by Chemical Vapor Deposition. J. Am.Chem. Soc. 126 (2004) 6248–9.

DOI: 10.1021/ja049217+

Google Scholar

[9] Gao, T.; Meng, G.; Wang, Y.; Sun, S.; Zhang, L.Electrochemical Synthesis of Copper Nanowires. J. Phys.Condens. Matter 14 (2002) 355–363.

DOI: 10.1088/0953-8984/14/3/306

Google Scholar

[10] Zhao, Y.; Zhang, Y.; Li, Y.; Yan, Z. Soft Synthesis of Single-Crystal Copper Nanowires of Various Scales. NewJ. Chem. 36 (2012) 130.

Google Scholar

[11] Guo, H. Z.; Lin, N.; Chen, Y. Z.; Wang, Z. W.; Xie, Q. S.; Zheng, T. C.; Gao, N.; Li, S. P.; Kang, J.; Cai, D. J. et al. Copper nanowires as fully transparent conductive electrodes. Sci. Rep. 3 (2013) 2323.

DOI: 10.1038/srep02323

Google Scholar

[12] Choi, H.; Park, S.-H. Seedless growth of free-standing copper nanowires by chemical vapor deposition. J. Am. Chem. Soc. 126 (2004) 6248–6249.

DOI: 10.1021/ja049217+

Google Scholar

[13] Zhao, Y. X.; Zhang, Y.; Li, Y. P.; Yan, Z. F. Soft synthesis of single-crystal copper nanowires of various scales. New J. Chem. 36 (2012) 130–138.

DOI: 10.1039/c1nj20800d

Google Scholar

[14] Rathmell, A. R.; Bergin, S. M.; Hua, Y. L.; Li, Z. Y.; Wiley, B. J. The growth mechanism of copper nanowires and their properties in flexible, transparent conducting films. Adv. Mater. 22 (2010) 3558–3563.

DOI: 10.1002/adma.201000775

Google Scholar

[15] Ye, S. R.; Rathmell, A. R.; Stewart, I. E.; Ha, Y. C.; Wilson, A. R.; Chen, Z. F.; Wiley, B. J. A rapid synthesis of high aspect ratio copper nanowires for high-performance transparent conducting films. Chem. Commun. 50 (2014) 2562–2564.

DOI: 10.1039/c3cc48561g

Google Scholar

[16] Chen, J. Y.; Zhou, W. X.; Chen, J.; Fan, Y.; Zhang, Z. Q.; Huang, Z. D.; Feng, X. M.; Mi, B. X.; Ma, Y. W.; Huang, W. Solution-processed copper nanowire flexible transparent electrodes with PEDOT: PSS as binder, protector and oxidelayer scavenger for polymer solar cells. Nano Res. 8 (2015).

DOI: 10.1007/s12274-014-0583-z

Google Scholar

[17] D. Zhang, R. Wang, M. Wen, D. Weng, X. Cui, J. Sun, H. Li and Y. Lu,, Synthesis of ultralong copper nanowires for high performance transparent electrodes, J Am Chem Soc. 134 (2012) 14283.

DOI: 10.1021/ja3050184

Google Scholar

[18] M. Tan and M. D. L. Balela, Electrochemical Investigation of the Growth of Copper Nanowires in the Presence of Ethylenediamine through Mixed Potential, J. Electrochem. Soc., 164 (2017) 7.

DOI: 10.1149/2.0491707jes

Google Scholar

[19] B. Wiley, Y. Sun, and Y. Xia, Synthesis of silver nanostructures with controlled shapes and properties, Acc. Chem. Res. 40 (2007) 1067-1076.

DOI: 10.1021/ar7000974

Google Scholar

[20] N. de Guzman and M. D. L. Balela, Growth of Ultralong Ag Nanowires by Electroless Deposition in Hot Ethylene Glycol for Flexible Transparent Conducting Electrodes, J. Nanomater, (2017).

DOI: 10.1155/2017/7896094

Google Scholar

[21] M. Tan and M. D. Balela, Oleylamine Assisted Synthesis of Ultralong Copper Nanowires, MATEC Web of Conferences, 27 (2015), 03003.

DOI: 10.1051/matecconf/20152703003

Google Scholar

[22] M. Tan and M. D. L. Balela, One-pot synthesis of high aspect ratio of copper nanowires in aqueous solution, Adv. Mater. Res. 1119 (2015) 34-37.

DOI: 10.4028/www.scientific.net/amr.1119.34

Google Scholar

[23] M. Tan, L. de Jesus, K. L. Amores, E. Datu, and M. D. L. Balela, Electroless Deposition of Copper Nanostructures in Aqueous Solution, Adv. Mater. Res. 1043 (2014) 114-118.

DOI: 10.4028/www.scientific.net/amr.1043.114

Google Scholar

[24] R. Rathmell, S. M. Bergin, Y.-L. Hua, Z.-Y. Li and B. J. Wiley, The growth mechanism of copper nanowires and their properties in flexible, transparent conducting films, Adv. Mater. 22 (2010) 3558.

DOI: 10.1002/adma.201000775

Google Scholar

[25] Z.Jiang, Y.Tian and S. Ding, Synthesis and Characterization of ultra-long and pencil-like copper nanowires with a penta-twinned structure by hydrothermal method, Mater Lett. 136 (2014) 310–313.

DOI: 10.1016/j.matlet.2014.08.033

Google Scholar

[26] C.R. Chu, C. Lee et al., Fabrication of sintering-free flexible copper nanowire/polymer composite transparent electrodes with enhanced chemical and mechanical stability, Nano Res. 9,7 (2017) 2162-2173.

DOI: 10.1007/s12274-016-1105-y

Google Scholar