Sintering of Silver Nanoparticles at Room-Temperature for Conductive Ink Applications

Article Preview

Abstract:

Silver (Ag) nanoparticles synthesized in an aqueous system was sintered at room temperature using NaCl solution. The Ag nanoparticles have an average diameter of about 24 nm. After dispersing the Ag nanoparticles in 50mM NaCl solution, a significant increase in particle size to about 206 nm was observed. On the other hand, the particle size was also increased to about 175 nm when the Ag nanoparticles were printed and then 50mM NaCl solution was dropped onto the printed Ag nanoparticles. The enlargement of particle size was accompanied by the increase in conductivity of the Ag nanoparticle ink. The resistance was reduced from 57.7 to 6.5 and 6.7 ohms for the as-prepared and sintered Ag nanoparticles using two different treatments, respectively. The sintered Ag nanoparticle ink formulation exhibit high conductivity when drawn on both cellulose acetate film and bond paper even after bending and folding of the substrates.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

144-148

Citation:

Online since:

August 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Magdassi, M. Grouchko, O. Berezin, A. Kamyshny, Triggering the sintering of silver nanoparticles at room temperature, ACS Nano. 4 (2010) 1943-(1948).

DOI: 10.1021/nn901868t

Google Scholar

[2] M. Layani, M. Grouchko, S. Shemesh, S. Magdassi, Conductive patterns on plastic substrates by sequential inkjet printing of silver nanoparticles and electrolyte sintering solutions, J. Mater. Chem. 22 (2012) 14349-14352.

DOI: 10.1039/c2jm32789a

Google Scholar

[3] E. Datu, M. D. Balela, In situ electrochemical study of copper nanoparticles stabilized with food grade gelatin, Key Engineering Materials 705 (2016) 163-167.

DOI: 10.4028/www.scientific.net/kem.705.163

Google Scholar

[4] M. D. Balela, K. L Amores. Formation of oxidation-stable copper nanoparticles in water. Adv. Mater. Res. 1132 (2016) 255-259.

DOI: 10.4028/www.scientific.net/amr.1131.255

Google Scholar

[5] M. Tan, L. de Jesus, K. L. Amores, E. Datu, M. D. Balela. Electroless deposition of copper nanostructures in aqueous solution, Adv. Mater. Res. 1043 (2014) 114-118.

DOI: 10.4028/www.scientific.net/amr.1043.114

Google Scholar

[6] W. Cui, W. Lu, Y. Zhang, G. Lin, T. Wei, L. Jiang. Gold nanoparticle ink suitable for electric-conductive pattern fabrication using ink-jet printing technology, Colloids and Surfaces A Physiochemical and Engineering Aspects 358 (2010) 35-41.

DOI: 10.1016/j.colsurfa.2010.01.023

Google Scholar

[7] D. Huang, F. Liao, S. Molesa, D. Redinger, V. Subramanian. Plastic-Compatible Low Resistance Printable Gold Nanoparticle Conductors for Flexible Electronics, J. Electrochem. Soc. 150 (2003) G412–G417.

DOI: 10.1149/1.1582466

Google Scholar

[8] D. Corsino, M.D. Balela. Room temperature sintering of printer silver nanoparticle conductive ink, IOP Conf. Ser.: Mater. Sci. Eng. 264 (2017) 012020.

DOI: 10.1088/1757-899x/264/1/012020

Google Scholar

[9] N. De Guzman, M.D. Balela. Formation of silver nanowires in ethylene glycol for transparent conducting electrode.

Google Scholar

[10] J. S. Kang, J. Ryu, H.S. Kim, H.T. Hahn. Sintering of inkjet-printed silver nanoparticles at room temperature using intense pulsed light, J. of Elec. Mater. 40 (2011) 2268-2277.

DOI: 10.1007/s11664-011-1711-0

Google Scholar

[11] N. De Guzman, M.D. Balela. Growth of ultralong Ag nanowires by electroless deposition in hot ethylene glycol for flexible transparent conducting electrodes, Journal of Nanomaterials 2017 (2017) 14 pages.

DOI: 10.1155/2017/7896094

Google Scholar

[12] E. Tekin, P. J. Smith, U. S. Schubert. Inkjet printing as a deposition and patterning tool for polymers and inorganic particles, Soft Matter 4 (2008) 703–713.

DOI: 10.1039/b711984d

Google Scholar

[13] L. Rapp, J. Ailuno, A. P. Alloncle, P. Delaporte. Pulsed-laser printing of silver nanoparticles ink: control of morphological properties, Opt. Express 19 (2011) 21563–21574.

DOI: 10.1364/oe.19.021563

Google Scholar

[14] T. H. J van Osch, J. Perelaer, A.W.M. de Laat, U.S. Schubert. Inkjet printing of narrow conductive tracks on untreated polymeric substrates, Adv. Mater. 20 (2008) 343–345.

DOI: 10.1002/adma.200701876

Google Scholar

[15] S. Sivaramakrishnan, P.J. Chia, Y.C. Yeo, L.L. Chua, P.K.H. Ho. Controlled insulator-to-metal transformation in printable polymer composites with nanometal clusters, Nat. Mater. 6 (2007) 149–155.

DOI: 10.1038/nmat1806

Google Scholar

[16] D. Kim, S. Jeong, B.K. Park, J. Moon. Direct writing of silver conductive patterns: Improvement of film morphology and conductance by controlling solvent compositions, Appl. Phys. Lett. 89 (2006) 264101.

DOI: 10.1063/1.2424671

Google Scholar

[17] J. Perelaer, B.J de Gans, U.S. Schubert. Ink-jet printing and microwave sintering of conductive silver tracks. Adv. Mater. 18 (2006) 2101–2104.

DOI: 10.1002/adma.200502422

Google Scholar

[18] S. Joo, D.F. Baldwin. Performance of silver nano particles as an electronics packaging interconnects material. Elec. Comp. C (2007) 212–226.

DOI: 10.1109/ectc.2007.373801

Google Scholar

[19] M. Layani, S. Magdassi. Flexible transparent conductive coatings by combining self-assembly with sintering of silver nanoparticles performed at room temperature, J. Mater. Chem. 21 (2011) 15378–15382.

DOI: 10.1039/c1jm13174e

Google Scholar

[20] M. Grouchko, A. Kamyshny, C.F. Mihailescu, D.F. Anghel, S. Magdassi. Conductive inks with a built-in, mechanism that enables sintering room temperature, ACS Nano 5 (2011) 3354-3359.

DOI: 10.1021/nn2005848

Google Scholar